http://www.xriadiat.com/

PROF: ATMANI NAJIB

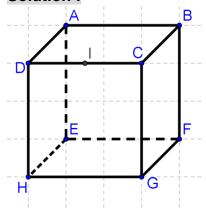
Tronc commun Sciences BIOF

Correction Série N°1: Géométrie dans l'espace

Exercice 1: (**) Soit *ABCDEFGH* un cube de l'espace et soit I le milieu du segment [DC]

- 1) Est ce que le point I appartient au plan (ABC) ? Justifier votre réponse
- 2) Montrer que les points E; H; C; B sont coplanaires

Solution:



On a : ABCD un carré donc : $(AB) \parallel (DC)$

Donc : les points A; B; C; D sont coplanaires

Donc: $(DC) \subset (ABC)$

Et puisque : $I \in (DC)$ alors : $I \in (ABC)$

2) On a : ABCD un carré donc : $(BC) \parallel (AD)$ Et on a : ADEH un carré donc : $(EH) \parallel (AD)$

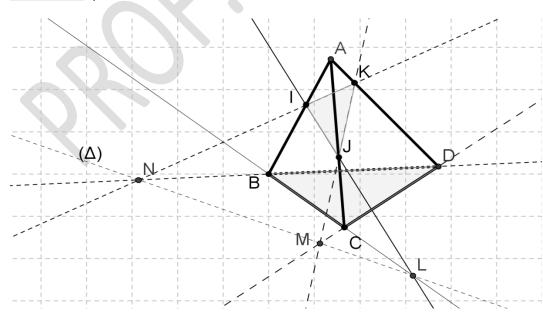
Donc: $(EH) \parallel (BC)$ et par suite les points E; H; C; B sont coplanaires

Exercice 2: (**) ABCD un tétraèdre et soient : I et J et K des points respective des segments AB;

[AC] et [AD] tel que: (IJ) coupe (BC) en L et (JK) coupe (CD) en M et (IK) coupe (BD) en N

Montrer que : les points L; M; N sont alignés

Solution:1)



PROF: ATMANI NAJIB

On considère les plans : (IJK) et (BCD)

On a :
$$(IJK) \neq (BCD)$$
 et $\begin{cases} L \in (IJ) \\ (IJ) \subset (IJK) \end{cases}$ donc : $L \in (IJK)$
On a : $\begin{cases} L \in (BC) \\ (BC) \subset (BCD) \end{cases}$ donc : $L \in (BCD)$

On a:
$$\begin{cases} L \in (BC) \\ (BC) \subset (BCD) \end{cases}$$
 donc: $L \in (BCD)$

Donc : les plans : (IJK) et (BCD) se coupent suivant une droite (Δ) qui passe par L

On a aussi :
$$\begin{cases} M \in (JK) \\ (JK) \subset (IJK) \end{cases}$$
 donc : $M \in (IJK)$

$$\mathsf{Et}: \begin{cases} M \in \big(CD\big) \\ \big(CD\big) \subset \big(BCD\big) \end{cases} \mathsf{donc}: M \in \big(BCD\big)$$

ET par suite : $M \in (BCD) \cap (IJK) = (\Delta)$

On a aussi :
$$\begin{cases} N \in (IK) \\ (IK) \subset (IJK) \end{cases} \text{ donc } : N \in (IJK) \text{ et } \begin{cases} N \in (BD) \\ (BD) \subset (BCD) \end{cases} \text{ donc } : N \in (BCD)$$

Par suite : $N \in (BCD) \cap (IJK) = (\Delta)$

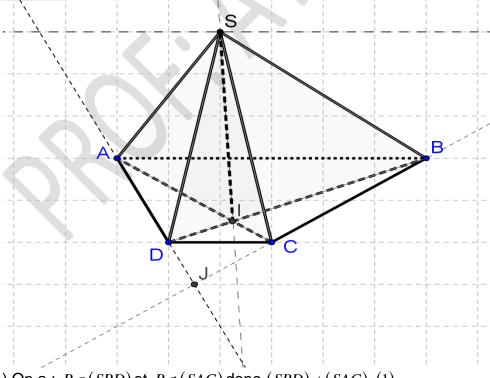
Par suite : les points L; M; N appartiennent à la même droite (Δ)

Par conséquent : les points L; M; N sont alignés

Exercice 3: (**) SABCD une pyramide sa base est un trapèze ABCD tel que $(AB) \parallel (CD)$

- 1)Déterminer la droite (Δ) intersection des plans (SAC) et (SBD)
- 2) Déterminer la droite (Δ') intersection des plans (SAB) et (SCD)
- 3) Déterminer la droite (Δ'') intersection des plans (SAB) et (SBC)

Solution:



1) On a : $B \in (SBD)$ et $B \notin (SAC)$ donc $(SBD) \neq (SAC)$ (1)

On a: $S \in (SBD)$ et $S \in (SAC)$ donc $S \in (SBD) \cap (SAC)$ (2)

Soit I Le point d'intersection des droites (AC) et (BD)

On a:
$$\begin{cases} I \in (AC) \\ (AC) \subset (SAC) \end{cases}$$
 donc: $I \in (SAC)$

Et on a : $\begin{cases} I \in (BD) \\ (BD) \subset (SBD) \end{cases}$ donc : $I \in (SBD)$

Donc: $I \in (SAC) \cap (SBD)$ (3)

Donc : de (1) et (2) et (3) en déduit que : $(SAC) \cap (SBD) = (SI) = (\Delta)$

2) On a: $A \in (SAB)$ et $A \notin (SCD)$ Donc $(SAB) \neq (SAD)$ (1)

On a: $S \in (SAB)$ et $S \in (SCD)$ Donc $S \in (SAB) \cap (SCD)$ (2)

Donc: $(SAB) \cap (SCD) = (\Delta')$

Puisque : $(AB) \subset (SAB)$ et $(CD) \subset (SCD)$ et $(AB) \parallel (CD)$

Donc : d'après le théorème du toit : la droite (Δ') est la droite qui passe par S et parallèle a (AB) et (CD)

3) On a: $A \in (SAD)$ et $A \notin (SBC)$ Donc $(SAD) \neq (SBC)$ (1)

On a: $S \in (SAD)$ et $S \in (SBC)$ Donc $S \in (SAD) \cap (SBC)$ (2)

Donc: $(SBC) \cap (SAD) = (\Delta'')$ qui passe par S

Soit J Le point d'intersection des droites (AD) et (BC)

Donc: $J \in (AD)$ et $J \in (BC)$

Par suite : $J \in (SBC) \cap (SAD)$ (3)

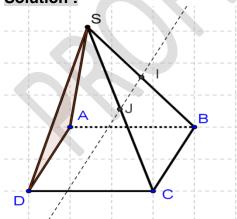
Donc: de (1) et (2) et (3) en déduit que : $(SBC) \cap (SAD) = (SJ) = (\Delta'')$

Exercice 4 : (**) SABCD une pyramide sa base est un parallélogramme ABCD Soient I et J les milieux respectifs des segments [SB] et [SC]

1) Montrer que : $(AD) \parallel (IJ)$

2) Montrer que : $(IJ) \parallel (ADS)$

Solution:



1) Dans le triangle SBC on a I le milieu du segment $\begin{bmatrix} SB \end{bmatrix}$ et J le milieu du segment $\begin{bmatrix} SC \end{bmatrix}$

Donc $(IJ) \parallel (BC)$ (1) et puisque ABCD est un parallélogramme alors $(BC) \parallel (AD)$) (2)

De (1) et (2) on déduit que $(AD) \parallel (IJ)$

2) On a : $A \in (ADS)$ et $D \in (ADS)$ donc : $(AD) \subset (ADS)$ (4) (d'après une axiome d'incidence)

PROF: ATMANI NAJIB

Et puisque : $(AD)\parallel(IJ)$ alors : $(IJ)\parallel(ADS)$

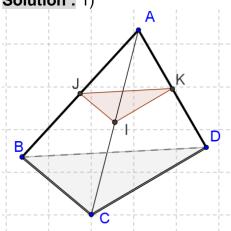
Exercice 5: (**) ABCD un tétraèdre

Soient I; J et K les milieux respectifs des segments [AC]; [AB] et [AD]

1)Faire une figure

2)Montrer que : (BCD) || (IJK)

Solution: 1)



2)dans le triangle ABC on a I le milieu du segment ABC et ABC le milieu du segment ABC

Donc: $(IJ) \parallel (BC)$

Et dans le triangle ABD on a : K le milieu du segment AD et A le milieu du segment AB

Donc: (JK) || (BD)

Et puisque : $(IJ) \parallel (BC)$ et $(BC) \subset (BCD)$ alors : $(IJ) \parallel (BCD)$

Et puisque : (JK) || (BD) et $(BD) \subset (BCD)$ alors : (JK) || (BCD)

Et comme on a : $(IJ) \| (BCD) (1)$ et $(JK) \| (BCD) (2)$ et $(IJ) \cap (JK) = \{J\} (3)$

Et $(IJ) \subset (IJK)$ et $(JK) \subset (IJK)$ (4)

De (1) et (2) et (3) et (4) on déduit que: $(BCD) \parallel (IJK)$

Exercice 6: (**) ABCD un tétraèdre tel que : BD = DC et Soient I; J et K

Les milieux respectifs des Segments [AB]; [AC] et [BC]

1)Faire une figure

2)Montrer que : $(DK) \perp (IJ)$

Solution :1) La figure

2) Dans le triangle ABC on a I le milieu du segment AB et

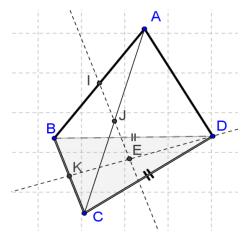
J le milieu du segment[AC]

Donc: $(IJ) \parallel (BC)$ (1)

Dans le triangle BCD on a : BD = DC et K le milieu du

segment [BC] Donc : $(DK) \perp (BC)$) (2)

Donc : de (1) et (2) on déduit que : $\left(DK\right)\bot\left(IJ\right)$



PROF: ATMANI NAJIB

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

