http://www.xriadiat.com/

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Correction Série N°3: PRODUIT SCALAIRE

Exercice1: (*) Soient \vec{u} et \vec{v} deux vecteurs tels que : $\|\vec{u}\| = 3$ et $\|\vec{v}\| = 2\sqrt{2}$ et $(\vec{u}; \vec{v}) = \frac{\pi}{4}$

Calculer : $\vec{u} \cdot \vec{v}$

Solution: $\vec{u}.\vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}; \vec{v}) = 3 \times 2\sqrt{2} \times \cos(\frac{\pi}{4}) = 6\sqrt{2} \times \frac{\sqrt{2}}{2} = 6$

Exercice2: (*) Soient \vec{u} et \vec{v} deux vecteurs tels que : $\|\vec{u}\| = 3$ et $\|\vec{v}\| = \frac{1}{2}$ et $(\vec{u}; \vec{v}) = \frac{2\pi}{3}$

Calculer: \overrightarrow{u} . \overrightarrow{v}

Solution: $\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}; \vec{v}) = 3 \times \frac{1}{2} \times \cos(\frac{2\pi}{3}) = \frac{3}{2} \times \cos(\pi - \frac{\pi}{3})$ or $\cos(\pi - x) = -\cos x$

Donc: $\vec{u} \cdot \vec{v} = -\frac{3}{2} \times \cos\left(\frac{\pi}{3}\right) = -\frac{3}{2} \times \frac{1}{2} = -\frac{3}{4}$

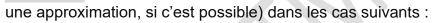
Exercice3: (**) Soit un triangle équilatéral ABC de côté a.

Calculer : $\overrightarrow{AB}.\overrightarrow{AC}$

Solution: $\overrightarrow{AB}.\overrightarrow{AC} = \|\overrightarrow{AB}\| \times \|\overrightarrow{AC}\| \times \cos BAC$

$$= a \times a \times \cos \frac{\pi}{3} = a^2 \times \frac{1}{2} = \frac{a^2}{2}$$

Exercice4: (**) Déterminer, si possible, une mesure de l'angle $(\vec{u}; \vec{v})$



a)
$$\|\vec{u}\| = 2$$
 et $\|\vec{v}\| = 3$ et $\vec{u} \cdot \vec{v} = -6$

b)
$$\|\vec{u}\| = 2$$
 et $\|\vec{v}\| = \sqrt{3}$ et $\vec{u} \cdot \vec{v} = -3$

c)
$$\|\vec{u}\| = 3\sqrt{2}$$
 et $\|\vec{v}\| = 2$ et $\vec{u} \cdot \vec{v} = -6$

d)
$$\|\vec{u}\| = 3$$
 et $\|\vec{v}\| = 7$ et $\vec{u} \cdot \vec{v} = 14$

Solution :a)
$$\|\vec{u}\| = 2$$
 et $\|\vec{v}\| = 3$ et $\vec{u} \cdot \vec{v} = -6$

On sait que : $\vec{u} \cdot \vec{v} = \|\vec{u}\| \times \|\vec{v}\| \cos(\vec{u}; \vec{v})$ donc : $\cos(\vec{u}; \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \times \|\vec{v}\|}$

Donc: $\cos(\overrightarrow{u}; \overrightarrow{v}) = \frac{-6}{2 \times 3} = -1 = \cos \pi$

Donc:
$$(\overrightarrow{u}; \overrightarrow{v}) \equiv \pi [2\pi]$$

b)
$$\|\vec{u}\| = 2$$
 et $\|\vec{v}\| = \sqrt{3}$ et $\vec{u} \cdot \vec{v} = -3$

On sait que : $\vec{u} \cdot \vec{v} = \|\vec{u}\| \times \|\vec{v}\| \cos(\vec{u}; \vec{v})$ donc : $\cos(\vec{u}; \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \times \|\vec{v}\|}$

Donc: $\cos(\vec{u}; \vec{v}) = \frac{-3}{2\sqrt{3}} = -\frac{3\sqrt{3}}{6} = -\frac{\sqrt{3}}{2} = -\cos(\frac{\pi}{6}) = \cos(\pi - \frac{\pi}{6}) = \cos(\frac{5\pi}{6})$

Donc: $(\overrightarrow{u}; \overrightarrow{v}) \equiv \frac{5\pi}{6} [2\pi]$ ou $(\overrightarrow{u}; \overrightarrow{v}) \equiv -\frac{5\pi}{6} [2\pi]$

c) $\|\vec{u}\| = 3\sqrt{2}$ et $\|\vec{v}\| = 2$ et $\vec{u} \cdot \vec{v} = -6$.

On sait que : $\overrightarrow{u}.\overrightarrow{v} = \|\overrightarrow{u}\| \times \|\overrightarrow{v}\| \cos(\overrightarrow{u};\overrightarrow{v})$ donc : $\cos(\overrightarrow{u};\overrightarrow{v}) = \frac{\overrightarrow{u}.\overrightarrow{v}}{\|\overrightarrow{u}\| \times \|\overrightarrow{v}\|}$

Signifie que : $\cos(\vec{u}; \vec{v}) = \frac{-6}{3\sqrt{2} \times 2} = \frac{-6}{6\sqrt{2}} = -\frac{\sqrt{2}}{2}$

Signifie que : $\cos\left(\overrightarrow{u};\overrightarrow{v}\right) = -\cos\frac{\pi}{4} = \cos\left(\pi - \frac{\pi}{4}\right) = \cos\left(\frac{3\pi}{4}\right)$

Donc: $(\overrightarrow{u}; \overrightarrow{v}) = \frac{3\pi}{4} [2\pi]$ ou $(\overrightarrow{u}; \overrightarrow{v}) = -\frac{3\pi}{4} [2\pi]$

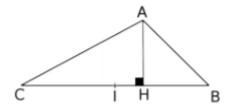
d) $\|\vec{u}\| = 3$ et $\|\vec{v}\| = 7$ et $\vec{u} \cdot \vec{v} = 14$

On sait que : $\overrightarrow{u}.\overrightarrow{v} = \|\overrightarrow{u}\| \times \|\overrightarrow{v}\| \cos(\overrightarrow{u};\overrightarrow{v})$ donc : $\cos(\overrightarrow{u};\overrightarrow{v}) = \frac{\overrightarrow{u}.\overrightarrow{v}}{\|\overrightarrow{u}\| \times \|\overrightarrow{v}\|}$

Signifie que : $\cos(\vec{u}; \vec{v}) = \frac{14}{3 \times 7} = \frac{14}{21} = \frac{2}{3}$

Signifie que : $(\vec{u}; \vec{v}) = \cos^{-1}(\frac{2}{3}) \equiv 0.841[2\pi]$ ou $(\vec{u}; \vec{v}) = -\cos^{-1}(\frac{2}{3}) \equiv -0.841[2\pi]$

Exercice5: (*) Considérons un triangle ABC tels que : BC = 6, I est le milieu de [BC] et H le projeté orthogonal de A sur (BC). On a $H \in [BI]$ et IH = 1.



Calculer: 1) $\overrightarrow{BC} \cdot \overrightarrow{BA}$ 2) $\overrightarrow{BC} \cdot \overrightarrow{CA}$

Solution :1) Calculons : \overrightarrow{BC} . \overrightarrow{BA}

H étant le projeté orthogonal de A sur la droite (BC) alors on a :

 $\overrightarrow{BC}.\overrightarrow{BA} = \overrightarrow{BC}.\overrightarrow{BH}$

Les vecteurs \overrightarrow{BC} et \overrightarrow{BH} étant colinéaire et de même sens alors :

 $\overrightarrow{BC} \cdot \overrightarrow{BA} = \overrightarrow{BC} \cdot \overrightarrow{BH} = BC \times BH$

Déterminons BH.

On a : BH = BC - HC Or : HC = HI + IC = 3 + 1 = 4 alors : HC = 4

Ainsi : BH = 6 - 4 = 2

Par conséquent : $\overrightarrow{BC} \cdot \overrightarrow{BA} = \overrightarrow{BC} \cdot \overrightarrow{BH} = BC \times BH = 6 \times 2 = 12$

2) Calculons : \overrightarrow{BC} . \overrightarrow{CA}

H étant le projeté orthogonal de A sur la droite (BC) alors on a :

 $\overrightarrow{BC}.\overrightarrow{CA} = \overrightarrow{BC}.\overrightarrow{CH}$

Les vecteurs \overrightarrow{BC} et \overrightarrow{CH} étant colinéaire et de sens contraire alors :

 $\overrightarrow{BC}.\overrightarrow{CH} = -BC \times CH$

De ce qui précède on a : HC = 4

Donc: $\overrightarrow{BC}.\overrightarrow{CH} = -6 \times 4 = -24$ D'où: $\overrightarrow{BC}.\overrightarrow{CA} = -24$

Exercice6: (**) ABCD est un rectangle de centre O tel que AB=8 et AD=5

1) Calculer les produits scalaires suivants :a) $\overrightarrow{AC}.\overrightarrow{AD}$ b) $\overrightarrow{AC}.\overrightarrow{DC}$ c) $\overrightarrow{AC}.\overrightarrow{BD}$

2) On désigne par α une mesure de l'angle AOB

Calculer $\cos \alpha$ puis en déduire une valeur approchée par défaut à 1 degré près de α

3) H et K sont les projetés orthogonaux respectifs de B et D sur (AC). Calculer AK et HK

4)a) Donner la valeur exacte de tan HDK

b) En déduire une valeur approchée à 1 degré près de HDK

Solution: 1)a) Calculons: $\overrightarrow{AC}.\overrightarrow{AD}$

Le point C se projette orthogonalement en D sur (AD), de sorte que :

$$\overrightarrow{AC}.\overrightarrow{AD} = \overrightarrow{AD}.\overrightarrow{AC} = \overrightarrow{AD}.\overrightarrow{AD} = \overrightarrow{AD}^2 = AD^2 = 25$$

b) Calculons : $\overrightarrow{AC}.\overrightarrow{DC}$

On « réarrange » le produit scalaire $\overrightarrow{AC}.\overrightarrow{DC}$ avant de le calculer :

Le point A se projette orthogonalement en D sur (CD), de sorte que :

$$\overrightarrow{CA}.\overrightarrow{CD} = \overrightarrow{CD}.\overrightarrow{CA} = \overrightarrow{CD}.\overrightarrow{CD} = \overrightarrow{CD^2} = CD^2 = 64$$

Donc: $\overrightarrow{AC}.\overrightarrow{DC} = 64$

c) Calculons : $\overrightarrow{AC}.\overrightarrow{BD}$

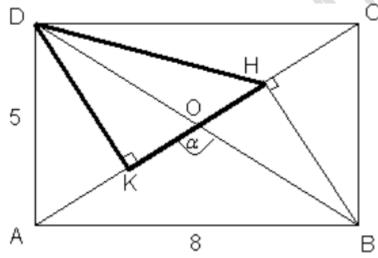
On applique la relation de Chasles et la distributivité du produit scalaire pour calculer :

$$\overrightarrow{AC}.\overrightarrow{BD} = \overrightarrow{AC}.(\overrightarrow{BA} + \overrightarrow{AD}) = \overrightarrow{AC}.\overrightarrow{BA} + \overrightarrow{AC}.\overrightarrow{AD} = -\overrightarrow{AC}.\overrightarrow{AB} + \overrightarrow{AC}.\overrightarrow{AD}$$

Le point C se projette orthogonalement en B sur (AB), de sorte que :

$$\overrightarrow{AC}.\overrightarrow{AB} = \overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AB} = \overrightarrow{AB}^2 = AB^2 = 64$$

Ainsi :
$$\overrightarrow{AC} \cdot \overrightarrow{BD} = -64 + 25 = -39$$



2) On calcule de deux manière différentes le produit scalaire $\overrightarrow{OA}.\overrightarrow{OB}$

D'une part :
$$\overrightarrow{OA}.\overrightarrow{OB} = \frac{1}{2}\overrightarrow{CA}.\frac{1}{2}\overrightarrow{DB} = \frac{1}{4}\overrightarrow{CA}.\overrightarrow{DB} = \frac{1}{4}\left(-\overrightarrow{AC}\right).\left(-\overrightarrow{BD}\right) = \frac{1}{4}\overrightarrow{AC}.\overrightarrow{BD}$$

On a déjà calculé : $\overrightarrow{AC} \cdot \overrightarrow{BD} = -39$

Donc: $\overrightarrow{OA} \cdot \overrightarrow{OB} = -\frac{39}{4}$

D'autre part : $\overrightarrow{OA}.\overrightarrow{OB} = \|\overrightarrow{OA}\| \times \|\overrightarrow{OB}\| \times \cos(AOB)$

D'après le théorème de Pythagore, la diagonale AC du rectangle mesure :

$$AC = \sqrt{AB^2 + BC^2} = \sqrt{8^2 + 5^2} = \sqrt{89}$$

Donc : La demi diagonales mesurent : $OA = OB = \frac{1}{2}\sqrt{89}$

Ainsi :
$$\overrightarrow{OA} \cdot \overrightarrow{OB} = \frac{1}{2} \sqrt{89} \times \frac{1}{2} \sqrt{89} \times \cos(\alpha)$$

En égalant les deux expressions du produit scalaire, on obtient : $\frac{89}{4} \times \cos(\alpha) = -\frac{39}{4}$

$$Donc: \cos(\alpha) = -\frac{39}{89}$$

Grâce à la calculatrice, on déduit que l'angle AOB mesure environ 116 ° (à 1 degré près)

3) On calcule de deux manière différentes le produit scalaire $\overrightarrow{AO}.\overrightarrow{AD}$.

D'une part, le point D se projette orthogonalement en K sur (AO).

Ainsi : $\overrightarrow{AO} \cdot \overrightarrow{AD} = \overrightarrow{AO} \cdot \overrightarrow{AK}$, et puisque les vecteurs \overrightarrow{AO} et \overrightarrow{AK} sont colinéaires de même sens,

Alors:
$$\overrightarrow{AO} \cdot \overrightarrow{AK} = AO \times AK = \frac{1}{2}\sqrt{89}AK$$

D'autre part :
$$\overrightarrow{AO}.\overrightarrow{AD} = \frac{1}{2}\overrightarrow{AC}.\overrightarrow{AD} = \frac{25}{2}$$

En égalant les deux expressions du produit scalaire \overrightarrow{AO} . \overrightarrow{AD}

On obtiendra :
$$\frac{1}{2}\sqrt{89}AK = \frac{25}{2}$$
 qui signifie que : $AK = \frac{25}{\sqrt{89}} = \boxed{\frac{25\sqrt{89}}{98}}$

Par symétrie, on déduit la valeur de
$$HC = \boxed{\frac{25\sqrt{89}}{98}}$$

On calcule alors
$$HK = AC - (AK + HC)$$
 c'est-à-dire : $HK = \sqrt{89} - 2\frac{25}{\sqrt{89}} = \frac{89 - 50}{\sqrt{89}} = \frac{39}{\sqrt{89}} = \frac{39\sqrt{89}}{89}$

4) a) Dans le triangle HDK rectangle en K, on calcule
$$\tan HDK = \frac{HK}{DK}$$

On calcule la longueur DK en appliquant le théorème de Pythagore dans le triangle AKD rectangle

en K:
$$DK^2 = AD^2 - AK^2 = 25 - \left(\frac{25}{\sqrt{89}}\right)^2 = \frac{1600}{89}$$

Donc:
$$DK = \sqrt{\frac{1600}{89}} = \frac{40}{\sqrt{89}}$$
 et on termine de calculer: $\tan HDK = \frac{HK}{DK} = \frac{\frac{39}{\sqrt{89}}}{\frac{40}{\sqrt{89}}} = \frac{39}{40}$

b) Grâce à la calculatrice, on déduit que l'angle HDK mesure environ 44 ° (à 1 degré près)

Exercice7: (**) Soit \vec{u} et \vec{v} deux vecteurs de même norme.

Démontrer que les vecteurs : $\vec{u} + \vec{v}$ et $\vec{u} - \vec{v}$ sont deux vecteurs orthogonaux

Solution: Calculons: $(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v})$

On applique « l'identité remarquable du produit scalaire » :

$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = \vec{u}^2 - \vec{v}^2 = ||\vec{u}||^2 - ||\vec{v}||^2 \text{ or } ||\vec{u}|| = ||\vec{v}||$$

Donc:
$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = 0$$

Par suite : les vecteurs : $\vec{u} + \vec{v}$ et $\vec{u} - \vec{v}$ sont deux vecteurs orthogonaux

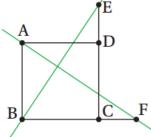
Exercice8 : (**) ABCD est un carré de côté c.

Les points E et F sont définis par : $\overrightarrow{CE} = \frac{3}{2}\overrightarrow{CD}$ et $\overrightarrow{BF} = \frac{3}{2}\overrightarrow{BC}$

Montrer que les droites (AF) et (BE) sont perpendiculaires.

Solution:

<u>CONSEILS</u>: Utilisez la relation de Chasles pour décomposer les vecteurs \overrightarrow{AF} et \overrightarrow{BE} et les écrire en fonction des vecteurs \overrightarrow{BC} et \overrightarrow{CD} , puis calculez leur produit scalaire.



$$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{BF} = \overrightarrow{AB} + \frac{3}{2}\overrightarrow{BC}$$
 et $\overrightarrow{BE} = \overrightarrow{BC} + \overrightarrow{CE} = \overrightarrow{BC} + \frac{3}{2}\overrightarrow{CD}$

Donc :
$$\overrightarrow{AF} \cdot \overrightarrow{BE} = \left(\overrightarrow{AB} + \frac{3}{2} \overrightarrow{BC} \right) \cdot \left(\overrightarrow{BC} + \frac{3}{2} \overrightarrow{CD} \right)$$
 et, en développant :

$$\overrightarrow{AF} \cdot \overrightarrow{BE} = \overrightarrow{AB}.\overrightarrow{BC} + \frac{3}{2}\overrightarrow{AB}.\overrightarrow{CD} + \frac{3}{2}\overrightarrow{BC}.\overrightarrow{BC} + \frac{9}{4}\overrightarrow{BC}.\overrightarrow{CD}$$

$$\overrightarrow{AB}.\overrightarrow{BC} = 0$$
 et $\overrightarrow{BC}.\overrightarrow{CD} = 0$ car \overrightarrow{BC} est orthogonal à \overrightarrow{AB} et \overrightarrow{CD}

$$\overrightarrow{AB}.\overrightarrow{CD} = -\overrightarrow{AB}.\overrightarrow{AB} = -\overrightarrow{AB^2} = -AB^2 = -c^2$$
 et $\overrightarrow{BC}.\overrightarrow{BC} = \overrightarrow{BC^2} = BC^2 = c^2$

D'où :
$$\overrightarrow{AF} \cdot \overrightarrow{BE} = 0 - \frac{3}{2}c^2 + \frac{3}{2}c^2 + \frac{9}{4} \times 0 = 0$$

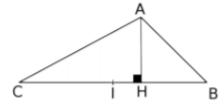
Donc : \overrightarrow{AF} et \overrightarrow{BE} sont orthogonaux, par suite : (AF) et (BE) sont perpendiculaires.

Exercice9: (**) Considérons un triangle ABC tels que : $BAC = \frac{2\pi}{3}$ et AC = 2 et $AB = \sqrt{3} - 1$

1) a) Montrer que : $BC = \sqrt{6}$

b) Montrer que : $\overrightarrow{BA}.\overrightarrow{BC} = 3 - \sqrt{3}$

2)Soit H le projeté orthogonal de A sur (BC).



Calculer: BH

Solution :1) a) Montrons que : $BC = \sqrt{6}$

D'après le Théorème d'Al Kashi dans ABC nous obtenons :

$$BC^2 = AB^2 + AC^2 - 2AB \times AC\cos BAC$$

$$BC^{2} = \left(\sqrt{3} - 1\right)^{2} + 4 - 4\left(\sqrt{3} - 1\right)\cos\frac{2\pi}{3}$$

$$BC^2 = 8 - 2\sqrt{3} - 4\left(\sqrt{3} - 1\right)\cos\left(\pi - \frac{\pi}{3}\right)$$
 on a : $\cos\left(\pi - \frac{\pi}{3}\right) = -\cos\frac{\pi}{3} = -\frac{1}{2}$

$$BC^{2} = 8 - 2\sqrt{3} + 4(\sqrt{3} - 1)\cos(\frac{\pi}{3})$$

$$BC^2 = 8 - 2\sqrt{3} + 4(\sqrt{3} - 1)\frac{1}{2} = 6$$

Donc : $BC = \sqrt{6}$

b) Montrons que : $\overrightarrow{BA}.\overrightarrow{BC} = 3 - \sqrt{3}$

 $\overrightarrow{BA}.\overrightarrow{BC} = \overrightarrow{BA}.\left(\overrightarrow{BA} + \overrightarrow{AC}\right) = \overrightarrow{BA}.\overrightarrow{BA} + \overrightarrow{BA}.\overrightarrow{AC} = \overrightarrow{BA}.\overrightarrow{BA} - \overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{BA}^2 - \overrightarrow{AB}.\overrightarrow{AC} = BA^2 - \overrightarrow{AB}.\overrightarrow{AC}$

On a: $\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \cos \frac{2\pi}{3}$

Donc: $\overrightarrow{AB} \cdot \overrightarrow{AC} = (\sqrt{3} - 1) \times 2 \times (-\frac{1}{2}) = -\sqrt{3} + 1$

Donc: $\overrightarrow{BA}.\overrightarrow{BC} = (\sqrt{3}-1)^2 + \sqrt{3}-1$

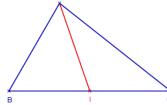
Donc: $\overrightarrow{BA}.\overrightarrow{BC} = 3 - \sqrt{3}$ 2)Calculons: BH

On a : H le projeté orthogonal de A sur (BC) et puisque : $\overrightarrow{BA}.\overrightarrow{BC} = 3 - \sqrt{3} > 0$

Donc: $\overrightarrow{BA}.\overrightarrow{BC} = \overrightarrow{BH}.\overrightarrow{BC} = BH \times BC$

Donc: $BH = \frac{\overrightarrow{BA}.\overrightarrow{BC}}{BC} = \frac{3-\sqrt{3}}{\sqrt{6}} = \frac{\sqrt{3}-1}{\sqrt{2}}$

Exercice10: (*) ABC est un triangle tel que AB=2; BC=6 et AC=5 et I est le milieu de [BC].



Calculer la longueur Al.

Solution : D'après le Théorème de la médiane dans ABC nous obtenons :

$$AB^2 + AC^2 = 2AI^2 + \frac{BC^2}{2}$$

Donc: $4+25=2AI^2+\frac{36}{2}$

Donc: $2AI^2 = 29 - 18$

Donc : $AI^2 = \frac{11}{2}$

Donc : $AI = \sqrt{\frac{11}{2}}$

Exercice11: (***) Soit ABC un triangle tel que et AB = 3 et $BC = 4\sqrt{3}$ et $ABC = \frac{\pi}{6}$

I le milieu du segment [BC]

- 1) Calculer AC
- 2) Montrer que $\overrightarrow{BA} \cdot \overrightarrow{BC} = 18$
- 3) Montrer que $\overrightarrow{AI} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}$
- 4) Calculer : $\overrightarrow{AI} \cdot \overrightarrow{AB}$ et en déduire la nature du triangle \overrightarrow{AIB}

Solution: 1) Calculons AC

D'après le Théorème d'Al Kashi on a :

$$AC^2 = BA^2 + BC^2 - 2BA \times BC \cos ABC$$

$$AC^2 = 9 + 48 - 24 \times \sqrt{3} \times \frac{\sqrt{3}}{2}$$
 donc $AC^2 = 21$ par suite: $AC = \sqrt{21}$

b) Montrons que : $\overrightarrow{BA} \cdot \overrightarrow{BC} = 18$

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = BA \times BC \times \cos ABC = 3 \times 4\sqrt{3} \times \frac{\sqrt{3}}{2} = 18$$

3) Montrons que : $\overrightarrow{AI} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}$

Nous avons : $\overrightarrow{AI} = \overrightarrow{AB} + \overrightarrow{BI}$

Puisque I est le milieu du segment [BC] nous obtenons : $\overrightarrow{AI} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}$

4) Calculons $\overrightarrow{AI} \cdot \overrightarrow{AB}$:

$$\overrightarrow{AI} \cdot \overrightarrow{AB} = \left(\overrightarrow{AB} + \frac{1}{2} \overrightarrow{BC} \right) \cdot \overrightarrow{AB} = \overrightarrow{AB} \cdot \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AB} \cdot \overrightarrow{BC} = \overrightarrow{AB}^2 + \frac{1}{2} \overrightarrow{AB} \cdot \overrightarrow{BC}$$

Donc:
$$\overrightarrow{AI} \cdot \overrightarrow{AB} = AB^2 - \frac{1}{2} \overrightarrow{BA} \cdot \overrightarrow{BC} = 9 - \frac{1}{2} \times 18 = 0$$

On a : $\overrightarrow{AI} \cdot \overrightarrow{AB} = 0$ Nous en déduisons que la droite (AI) est perpendiculaire à la droite (AB)

Et par conséquent le triangle AIB est rectangle en A

Exercice12: (***) Soit ABCD un carré de centre I et a la longueur de son côté ; on construit à l'extérieur un triangle équilatérale BCE (voir figure)

1) Soit J le milieu du segment AD et K le milieu du segment BC

Calculer $\overrightarrow{IJ} \cdot \overrightarrow{IC}$ en fonction de a

2) a) Montrer que :
$$\overrightarrow{IB} \cdot \overrightarrow{IE} = \left(\frac{1+\sqrt{3}}{4}\right)a^2$$

b) En déduire que :
$$\overrightarrow{BI} \cdot \overrightarrow{BE} = \left(\frac{1 - \sqrt{3}}{4}\right) a^2$$

3) En utilisant les résultats de la question b) montrer que
$$\cos\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2} - \sqrt{6}}{4}$$
:

Et en déduire :
$$\sin \frac{7\pi}{12}$$
 et $\tan \frac{7\pi}{12}$

Solution : 1) Calcul de $\overrightarrow{IJ} \cdot \overrightarrow{IC}$ en fonction de a

On a:
$$\overrightarrow{IJ} \cdot \overrightarrow{IC} = \overrightarrow{IJ} \cdot \left(\overrightarrow{IK} + \overrightarrow{KC}\right)$$
 donc: $\overrightarrow{IJ} \cdot \overrightarrow{IC} = \overrightarrow{IJ} \cdot \overrightarrow{IK} + \overrightarrow{IJ} \cdot \overrightarrow{KC}$

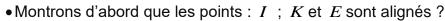
Et puisque : $(IJ) \perp (KC)$ alors : $\overrightarrow{IJ} \cdot \overrightarrow{KC} = 0$

Et puisque : I le milieu de $\begin{bmatrix} JK \end{bmatrix}$ alors : $\overrightarrow{IK} = -\overrightarrow{IJ}$

Donc:
$$\overrightarrow{IJ} \cdot \overrightarrow{IC} = \overrightarrow{IJ} \cdot \left(-\overrightarrow{IJ} \right) = -\overrightarrow{IJ}^2 = -IJ^2$$

Donc:
$$\overrightarrow{IJ} \cdot \overrightarrow{IC} = -\frac{a^2}{4}$$
 car $IJ = \frac{a}{2}$

2) a) Montrons que :
$$\overrightarrow{IB} \cdot \overrightarrow{IE} = \left(\frac{1+\sqrt{3}}{4}\right)a^2$$



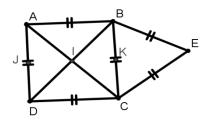
On a : EC = EB et IC = IB car ABCD un carré

Et on a : KC = KB car K le milieu du segment BC

Donc : les points : I ; K et E appartiennent à la médiatrice du segment BC

Donc : I ; K et E sont alignés

•On a :
$$\overrightarrow{IB} \cdot \overrightarrow{IE} = (\overrightarrow{IK} + \overrightarrow{KB}) \cdot \overrightarrow{IE}$$
 donc : $\overrightarrow{IB} \cdot \overrightarrow{IE} = \overrightarrow{IK} \cdot \overrightarrow{IE} + \overrightarrow{KB} \cdot \overrightarrow{IE}$



Et puisque : $(KB) \perp (IE)$ alors : $\overrightarrow{KB} \cdot \overrightarrow{IE} = 0$

Donc: $\overrightarrow{IB} \cdot \overrightarrow{IE} = \overrightarrow{IK} \cdot \overrightarrow{IE}$

Donc: $\overrightarrow{IB} \cdot \overrightarrow{IE} = IK \times IE \cos\left(\overrightarrow{IK}; \overrightarrow{IE}\right)$

Donc: $\overrightarrow{IB} \cdot \overrightarrow{IE} = IK \times IE \cos(0) = IK \times IE \arcsin(0) = 1$

Or on a : $IK = \frac{a}{2}$ et $IE = IK + KE = IK + \sqrt{CE^2 - CK^2}$

Donc: $IE = \frac{a}{2} + \sqrt{a^2 - \frac{a^2}{4}} = \frac{a}{2} + \frac{a\sqrt{3}}{2} = \frac{\left(1 + \sqrt{3}\right)}{2}a$

 $\mathrm{Donc}: \ \overrightarrow{IB} \bullet \overrightarrow{IE} = \frac{\left(1 + \sqrt{3}\right)}{4} a \times a = \frac{\left(1 + \sqrt{3}\right)}{4} a^2$

b) déduction que : $\overrightarrow{BI} \cdot \overrightarrow{BE} = \left(\frac{1 - \sqrt{3}}{4}\right) a^2$

On a: $\overrightarrow{BI} \cdot \overrightarrow{BE} = \overrightarrow{BI} \cdot \left(\overrightarrow{BI} + \overrightarrow{IE}\right)$ donc: $\overrightarrow{BI} \cdot \overrightarrow{BE} = \overrightarrow{BI}^2 + \overrightarrow{BI} \cdot \overrightarrow{IE} = BI^2 + \overrightarrow{BI} \cdot \overrightarrow{IE}$

Donc: $\overrightarrow{BI} \cdot \overrightarrow{BE} = BI^2 - \overrightarrow{IB} \cdot \overrightarrow{IE}$

Donc: $\overrightarrow{BI} \bullet \overrightarrow{BE} = KI^2 + KB^2 - \overrightarrow{IB} \bullet \overrightarrow{IE}$ car $BI^2 = KI^2 + KB^2$ (le triangle IKB est rectangle en K)

 $(KI = KB = \frac{a}{2})$

Donc: $\overrightarrow{BI} \cdot \overrightarrow{BE} = 2\left(\frac{a}{2}\right)^2 - \frac{\left(1+\sqrt{3}\right)}{4}a^2 \frac{a}{2}$ et par suite: $\overrightarrow{BI} \cdot \overrightarrow{BE} = \left(\frac{1-\sqrt{3}}{4}\right)a^2$

3) Montrons que : $\cos\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2} - \sqrt{6}}{4}$

On a : $\overrightarrow{BI} \cdot \overrightarrow{BE} = BI \times BE \cos \left(IBE \right)$ donc : $\cos \left(IBE \right) = \frac{\overrightarrow{BI} \cdot \overrightarrow{BE}}{BI \times BE}$

Et on a : $IBE = IBC + CBE = \frac{\pi}{4} + \frac{\pi}{3} = \frac{7\pi}{12}$ et on a $BI = \frac{\sqrt{2}}{2}a$ et BE = a et $\overrightarrow{BI} \cdot \overrightarrow{BE} = \left(\frac{1 - \sqrt{3}}{4}\right)a^2$

Donc: $\cos\left(\frac{7\pi}{12}\right) = \frac{\left(\frac{1-\sqrt{3}}{4}\right)a^2}{\frac{\sqrt{2}}{2}a^2} = \frac{\sqrt{2}\left(1-\sqrt{3}\right)}{4} = \frac{\sqrt{2}-\sqrt{6}}{4}$

Déduction de : $\sin \frac{7\pi}{12}$?

On a: $\sin^2 \frac{7\pi}{12} + \cos^2 \frac{7\pi}{12} = 1$ donc: $\sin^2 \frac{7\pi}{12} = 1 - \cos^2 \frac{7\pi}{12} = 1 - \left(\frac{\sqrt{2} - \sqrt{6}}{4}\right)^2 = 1 - \frac{8 - 2\sqrt{12}}{16} = \frac{8 + 2\sqrt{12}}{16}$

Donc: $\sin^2 \frac{7\pi}{12} = \left(\frac{\sqrt{2} + \sqrt{6}}{4}\right)^2$ par suite: $\sin \frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$ ou $\sin \frac{7\pi}{12} = -\frac{\sqrt{2} + \sqrt{6}}{4}$

Or: $0 < \frac{7\pi}{12} < \pi$ donc: $\sin \frac{7\pi}{12} \ge 0$ et par suite: $\sin \frac{7\pi}{12} = \frac{\sqrt{2} + \sqrt{6}}{4}$

Calcul de : $\tan \frac{7\pi}{12}$?

$$\tan\frac{7\pi}{12} = \frac{\sin\frac{7\pi}{12}}{\cos\frac{7\pi}{12}} = \frac{\frac{\sqrt{2} + \sqrt{6}}{4}}{\frac{\sqrt{2} - \sqrt{6}}{4}} = \frac{\sqrt{2} + \sqrt{6}}{\sqrt{2} - \sqrt{6}} = \frac{\left(\sqrt{2} + \sqrt{6}\right)^2}{\sqrt{2}^2 - \sqrt{6}^2} = \frac{8 + 2\sqrt{12}}{-4} = -2 - \sqrt{3}$$

Exercice13: (****) Soit A et B deux points dans le plan tel que : AB = 5

Et soit I le point du segment [AB] tel que : $\overrightarrow{AI} = \frac{1}{5}\overrightarrow{AB}$

- 1) Montrer que : $4\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$
- 2) Calculer les distances : IA et IB
- 3) Montrer que : quel que soit M un point du plan on a : $4MA^2 + MB^2 = 5MI^2 + 17$
- 4) Déterminer (C) l'ensemble des points M du plan tel que : $4MA^2 + MB^2 = 37$

Solution: AB = 5 et $\overrightarrow{AI} = \frac{1}{5} \overrightarrow{AB}$

1) Montrons que : $4\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$

$$4\overrightarrow{IA} + \overrightarrow{IB} = 4\left(-\frac{1}{5}\overrightarrow{AB}\right) + \overrightarrow{IA} + \overrightarrow{AB}$$

$$=-\frac{4}{5}\overrightarrow{AB}-\frac{1}{5}\overrightarrow{AB}+\overrightarrow{AB}=-\overrightarrow{AB}+\overrightarrow{AB}=\overrightarrow{0}$$

2) Calculons les distances IA et IB: On a: $\overrightarrow{AI} = \frac{1}{5}\overrightarrow{AB}$ donc: $\|\overrightarrow{AI}\| = \|\frac{1}{5}\overrightarrow{AB}\|$

Donc: $AI = \frac{1}{5}AB = \frac{1}{5} \times 5 = 1$ Par suite: IB = AB - AI = 4

3) Montrons que : quel que soit M un point du plan on a : $4MA^2 + MB^2 = 5MI^2 + 17$

Soit *M* un point du plan on a : $4MA^2 + MB^2 = 4\overrightarrow{MA}^2 + \overrightarrow{MB}^2$

Donc: $4MA^2 + MB^2 = 4\left(\overrightarrow{MI} + \overrightarrow{IA}\right)^2 + \left(\overrightarrow{MI} + \overrightarrow{IB}\right)^2$

Donc: $4MA^2 + MB^2 = 4\left(\overrightarrow{MI}^2 + 2\overrightarrow{MI} \cdot \overrightarrow{IA} + \overrightarrow{IA}\right)^2 + \overrightarrow{MI}^2 + 2\overrightarrow{MI} \cdot \overrightarrow{IB} + \overrightarrow{IB}^2$

Donc: $4MA^2 + MB^2 = 5\overrightarrow{MI}^2 + 2\overrightarrow{MI} \cdot (4\overrightarrow{IA} + \overrightarrow{IB}) + IA^2 + IB^2$

Donc: $4MA^2 + MB^2 = 5MI^2 + 2MI \cdot (\vec{0}) + 1^2 + 4^2$

Par suite : $4MA^2 + MB^2 = 5MI^2 + 17$

4) Déterminons l'ensemble (C) des points M du plan tel que : $4MA^2 + MB^2 = 37$?

On a: $4MA^2 + MB^2 = 5MI^2 + 17$ Donc: $5MI^2 + 17 = 37$

Cela équivaut à dire que : $MI^2 = 4$

Par conséquent : l'ensemble (C) des points M du plan tel que : $4MA^2 + MB^2 = 37$

Est le cercle de centre I et de rayon R = 2.

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

