http://www.xriadiat.com/

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Série N°3: PRODUIT SCALAIRE

(La correction voir http://www.xriadiat.com/)

Exercice1: (*) Soient \vec{u} et \vec{v} deux vecteurs tels que : $\|\vec{u}\| = 3$ et $\|\vec{v}\| = 2\sqrt{2}$ et $(\vec{u}; \vec{v}) = \frac{\pi}{4}$

Calculer: $\vec{u}.\vec{v}$

Exercice2: (*) Soient \vec{u} et \vec{v} deux vecteurs tels que : $\|\vec{u}\| = 3$ et $\|\vec{v}\| = \frac{1}{2}$ et $(\vec{u}; \vec{v}) = \frac{2\pi}{3}$

Calculer : $\vec{u} \cdot \vec{v}$

Exercice3: (**) Soit un triangle équilatéral ABC de côté a.

Calculer : $\overrightarrow{AB}.\overrightarrow{AC}$

Exercice4 : (**) Déterminer, si possible, une mesure de l'angle $(\vec{u}; \vec{v})$ (ou une approximation, si c'est possible) dans les cas suivants :

a)
$$\|\vec{u}\| = 2$$
 et $\|\vec{v}\| = 3$ et $\vec{u} \cdot \vec{v} = -6$

b)
$$\|\vec{u}\| = 2$$
 et $\|\vec{v}\| = \sqrt{3}$ et $\vec{u} \cdot \vec{v} = -3$

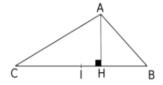
c)
$$\|\overrightarrow{u}\| = 3\sqrt{2}$$
 et $\|\overrightarrow{v}\| = 2$ et $\overrightarrow{u}.\overrightarrow{v} = -6$

d)
$$\|\vec{u}\| = 3$$
 et $\|\vec{v}\| = 7$ et $\vec{u} \cdot \vec{v} = 14$

Exercice5: (*) Considérons un triangle ABC tels que : BC = 6, I est le milieu de [BC]

et H le projeté orthogonal de A sur (BC). On a $H \in [BI]$ et IH = 1.

Calculer: 1) $\overrightarrow{BC} \cdot \overrightarrow{BA}$ 2) $\overrightarrow{BC} \cdot \overrightarrow{CA}$



Exercice6: (**) ABCD est un rectangle de centre O tel que AB=8 et AD=5

- 1) Calculer les produits scalaires suivants :a) $\overrightarrow{AC}.\overrightarrow{AD}$ b) $\overrightarrow{AC}.\overrightarrow{DC}$ c) $\overrightarrow{AC}.\overrightarrow{BD}$
- 2) On désigne par α une mesure de l'angle AOB

Calculer $\cos \alpha$ puis en déduire une valeur approchée par défaut à 1 degré près de α

- 3) H et K sont les projetés orthogonaux respectifs de B et D sur (AC). Calculer AK et HK
- 4)a) Donner la valeur exacte de tan HDK
- b) En déduire une valeur approchée à 1 degré près de HDK

Exercice7: (**) Soit \vec{u} et \vec{v} deux vecteurs de même norme.

Démontrer que les vecteurs : $\vec{u} + \vec{v}$ et $\vec{u} - \vec{v}$ sont deux vecteurs orthogonaux

Exercice8: (**) ABCD est un carré de côté c.

Les points E et F sont définis par : $\overrightarrow{CE} = \frac{3}{2}\overrightarrow{CD}$ et $\overrightarrow{BF} = \frac{3}{2}\overrightarrow{BC}$

Montrer que les droites (AF) et (BE) sont perpendiculaires.

Exercice9: (**) Considérons un triangle ABC tels que : $BAC = \frac{2\pi}{3}$ et AC = 2 et $AB = \sqrt{3} - 1$

PROF: ATMANI NAJIB

- 1) a) Montrer que : $BC = \sqrt{6}$
- b) Montrer que : $\overrightarrow{BA}.\overrightarrow{BC} = 3 \sqrt{3}$
- 2)Soit H le projeté orthogonal de A sur (BC).

Calculer: BH

PROF: ATMANI NAJIB

Exercice10: (*) ABC est un triangle tel que AB=2; BC=6 et AC=5 et I est le milieu de [BC]. Calculer la longueur AI.

Exercice11: (***) Soit ABC un triangle tel que et AB = 3 et $BC = 4\sqrt{3}$ et $ABC = \frac{\pi}{6}$

I le milieu du segment BC

- 1) Calculer AC
- 2) Montrer que $\overrightarrow{BA} \cdot \overrightarrow{BC} = 18$
- 3) Montrer que $\overrightarrow{AI} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}$

4) Calculer : $\overrightarrow{AI} \cdot \overrightarrow{AB}$ et en déduire la nature du triangle \overrightarrow{AIB}

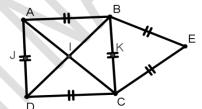
Exercice12: (***) Soit ABCD un carré de centre I et a la longueur de son côté ; on construit à l'extérieur un triangle équilatérale BCE (voir figure)

1) Soit J le milieu du segment AD et K le milieu du segment BC

Calculer $\overrightarrow{IJ} \cdot \overrightarrow{IC}$ en fonction de a

2) a) Montrer que :
$$\overrightarrow{IB} \cdot \overrightarrow{IE} = \left(\frac{1+\sqrt{3}}{4}\right)a^2$$

b) En déduire que :
$$\overrightarrow{BI} \cdot \overrightarrow{BE} = \left(\frac{1 - \sqrt{3}}{4}\right)a^2$$



3) En utilisant les résultats de la question b) montrer que $\cos\left(\frac{7\pi}{12}\right) = \frac{\sqrt{2} - \sqrt{6}}{4}$:

Et en déduire : $\sin \frac{7\pi}{12}$ et $\tan \frac{7\pi}{12}$

Exercice13: (****) Soit A et B deux points dans le plan tel que : AB = 5

Et soit I le point du segment [AB] tel que : $\overrightarrow{AI} = \frac{1}{5}\overrightarrow{AB}$

- 1) Montrer que : $4\vec{IA} + \vec{IB} = \vec{0}$
- 2) Calculer les distances : IA et IB
- 3) Montrer que : quel que soit M un point du plan on a : $4MA^2 + MB^2 = 5MI^2 + 17$
- 4) Déterminer (C) l'ensemble des points M du plan tel que : $4MA^2 + MB^2 = 37$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

PROF: ATMANI NAJIB