Tronc commun Sciences BIOF

Série N°5: TRIGONOMÉTRIE2

Partie 2 : Equations et inéquations trigonométriques

(La correction voir) http://www.xriadiat.com/)

Exercice 1: (*)1) Résoudre dans \mathbb{R} l'équation suivantes : $\sin x = \frac{1}{2}$

2) En déduire les solutions dans $]-\pi,\pi]$ de l'équation $\sin x = \frac{1}{2}$

Exercice 2: (*)1) Résoudre dans \mathbb{R} l'équation suivantes : $\cos x = -\frac{\sqrt{2}}{2}$

2) En déduire les solutions dans $]-\pi,\pi]$ de l'équation : $\cos x = -\frac{\sqrt{2}}{2}$

Exercice 3: (*) Soit l'équation : $-\sin x - \frac{\sqrt{2}}{2} = 0$

Résoudre l'équation dans l'intervalle [0,4π]

Exercice4: 1) Résoudre dans \mathbb{R} l'équation suivantes : (E) : $2\sin^2 x - 3\sin x + 1 = 0$

2) En déduire les solutions de l'équation (E) dans $[0;\pi]$

Exercice 5 : (*) (**) Résoudre les équations trigonométriques suivantes.

- 1) $\cos 2x = \cos\left(\frac{8\pi}{2}\right)$ dans \mathbb{R} puis dans $[\pi; 5\pi]$
- 2) $\sin\left(x \frac{2\pi}{3}\right) = \sin\left(\frac{\pi}{5}\right)$ dans \mathbb{R} puis dans $\left[-2\pi; 2\pi\right]$
- 3) $\cos 3x = -\cos x$ dans \mathbb{R} puis dans $\left[-2\pi; \pi\right]$
- 4) $\sin\left(2x + \frac{\pi}{4}\right) = -\sin x$ dans \mathbb{R} puis dans $\left[4\pi; 6\pi\right]$
- 5) $\sin(3x) = \cos(2x)$ dans \mathbb{R}

Exercice 6: (*) (**) Résoudre dans l'intervalle I les équations suivantes :

 $1) \tan x = \sin x \quad ; \quad I = \mathbb{R}$

- **2)** $\tan x = -\tan \frac{\pi}{12}$; $I = \left| -\frac{\pi}{2}; \frac{\pi}{2} \right|$
- **3)** $\sqrt{3} \tan \left(2x \frac{\pi}{4}\right) = 1$; $I = \mathbb{R}$ **4)** $\tan x \times \tan 2x = 1$; $I = \left[-\frac{\pi}{4}; \frac{\pi}{4} \right]$

PROF: ATMANI NAJIB

Exercice7: (**) Résoudre dans $-\frac{\pi}{2}$; π l'inéquation suivante : $\cos x \le \frac{1}{2}$

Exercice8: (**) Résoudre dans $]-\pi;\pi]$ l'inéquation suivante : $\sin x \le \frac{\sqrt{2}}{2}$

Exercice9: (***) On pose : $F(x) = \frac{1}{\cos^2 x + 2\sin^2 x}$ avec $x \in [0; \pi]$

1) Calculer:
$$F(0)$$
 et $F(\frac{\pi}{4})$ et $F(\frac{\pi}{6})$

- 2) Montrer que : $F(\pi x) = F(x)$ pour tout $x \in [0; \pi]$
- 3) En déduire : $F(\pi)$ et $F\left(\frac{3\pi}{4}\right)$ et $F\left(\frac{5\pi}{6}\right)$
- 4) Ecrire F(x) en fonction $\tan x$ pour tout $x \neq \frac{\pi}{2}$
- 5) Résoudre dans $[0; \pi]$ l'équation : $F(x) = \frac{4}{7}$ (E)
- 6) Résoudre dans $[0; \pi]$ l'inéquation : $F(x) > \frac{4}{7}$ (I)

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

PROF: ATMANI NAJIB