http://www.xriadiat.com/

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Série N°6: FONCTIONS – Généralités

(La correction voir http://www.xriadiat.com/)

Exercice 1 : (*) (**) (***) Déterminer l'ensemble de définition des fonctions suivantes définie par :

1)
$$f(x) = \frac{|x-5|}{x^2+1}$$
.

$$2) f(x) = \frac{\sqrt{|x|}}{x}$$

3)
$$f(x) = \sqrt{-2x^2 + x + 3}$$
.

4)
$$f(x) = \sqrt{-2x^2 + 3x - 5}$$
.

5)
$$f(x) = 3x^2 - \frac{1}{x} + \sqrt{-x}$$
.

4)
$$f(x) = \sqrt{-2x^2 + 3x - 5}$$
. 5) $f(x) = 3x^2 - \frac{1}{x} + \sqrt{-x}$. 6) $f(x) = \sqrt{\frac{-2x^2 + 2x + 13}{x^2 - x - 6}}$.

7)
$$f(x) = \sqrt{x^2 + (2\sqrt{3} - \sqrt{2})x - 2\sqrt{6}}$$
. 8) $f(x) = \frac{x+5}{x^2 - 5x + 7}$.

8)
$$f(x) = \frac{x+5}{x^2-5x+7}$$

Exercice 2: (**) Soit f la fonction définie par $f(x) = \frac{1}{x^2 + 1}$

- 1) Déterminer l'ensemble de définition de la fonction f
- 2) Étudier la parité de f.
- 3) a) Montrer que f est strictement décroissante sur $[0,+\infty[$
- b) En déduire le sens de variation de f sur $]+\infty,0]$
- 4)Dresser alors le tableau de variations de f sur $D_f = \{x \in E / f(x) \in \mathbb{R}\}$.
- 5) Montrer que pour tout réel x, $-1 \le f(x) \le 1$

Exercice 3: (*)**

- 1) Montrer que : la fonction nulle est la seule fonction qui soit à la fois paire et impaire
- 2) Soit la fonction numérique définie sur R

Montrer que : les fonctions suivantes :

$$g: x \mapsto \frac{f(x) + f(-x)}{2}$$
 et $h: x \mapsto \frac{f(x) - f(-x)}{2}$ sont respectivement paire et impaire

- 3) En déduire que toute fonction définie sur \mathbb{R} est somme d'une fonction paire et d'une fonction impaire
- 4) Soit la fonction numérique : $K(x) = -2x^5 + \frac{1}{2x^5}$
- a) Etudier la parité de K
- b) Montrer que la fonction : M(x) = K(x) 1 est une fonction ni paire ni impaire,

Exercice 4: (***) **Soit** la fonction numérique définie sur \mathbb{R} par : f(x) = 2x - 3 si $x \ge 0$

Sachant que : f est une fonction paire

- 1)Calculer: f(x) si $x \le 0$
- 2) Donner: f(x) si $x \in \mathbb{R}$

Exercice 5: (**) Soit f une fonction numérique tel que : $f(x) = \frac{2x^2 + 3}{x^2 + 1}$

- 1) Déterminer D_t 2) a) Démontrer que : $f(x) \le 3$ si $x \in \mathbb{R}$
- b) Est ce que 3 est une valeur maximale de f?
- 3) a) Démontrer que : 0 < f(x) si $x \in \mathbb{R}$
- b) Est ce que 2 est une valeur minimale de f. ?

Exercice 6: (***) Soit f une fonction numérique tel que : $f(x) = -x^2 - 2x + 1$

- 1)Préciser le domaine de définition de f
- 2)Calculer le taux d'accroissement de fonction de f entre x_1 et x_2 tel que : $x_1 \neq x_2$

<u>1</u>

PROF: ATMANI NAJIB

- 3) Etudier la monotonie de f sur : $I = [-1; +\infty[$ et sur $J =]-\infty; -1]$
- 4)Dresser le tableau de variation de f
- 5) a) En déduire que : pour tout $x \in \mathbb{R}$ On a : $f(x) \le 2$
- b) En déduire que : pour tout $x \in \left[-1; \frac{1}{2}\right]$ On a : $-\frac{1}{4} \le f(x) \le 2$
- c) En déduire que : pour tout $x \in [-3, -1]$ On a : $-2 \le f(x) \le 2$
- 6)Trouver les points d'intersection de la courbe (C_f) avec les axes du repère
- 7)Soit g la fonction définie sur R par : g(x) = -x-1

Tracer Les courbes représentatives $de(C_f)et(C_g)$ dans le repère $(O;\vec{i};\vec{j})$

- 8)Résoudre graphiquement et algébriquement l'équation : f(x) = g(x)
- 9) Résoudre graphiquement et algébriquement l'inéquation ; g(x) < f(x)
- 10) Déterminer graphiquement le nombre de solutions de l'équation : $-x^2 2x + m 1 = 0$ avec : $m \in \mathbb{R}$ **Exercice 7 :** (***) Soit f une fonction numérique tel que : $f(x) = 4x^2 8x + 6$
- 1) Déterminer D_f et déterminer α et β tel que : $f(x) = 2(x+\alpha)^2 + \beta$ pour tout $x \in \mathbb{R}$
- 2) Déterminer la nature de la courbe (C_f) de f et ses éléments caractéristiques
- 3) Déterminer le Tableau de variations de f
- 4) Soient : (D) la droite d'équation (D) : y = x 3 et deux points : A(1;-1) et B(0;-2) et $M(x;y) \in (D)$
- a) Tracer la courbe représentative $\operatorname{de}\left(C_{f}\right)$ et la droite $\left(D\right)$ dans un même repère $\left(O;\vec{i};\vec{j}\right)$
- b) Déterminer les coordonnées de M pour que : $MA^2 + MB^2$ soit minimale

Exercice 8 : (***) Soit f une fonction tel que : $f(x) = \frac{x}{x-1}$

- 1) Déterminer D_f l'ensemble de définition de la fonction f
- 2) a) Soient $x_1 \in D_f$ et $x_2 \in D_f$ tel que : $x_1 \neq x_2$

Montrer que : $T(x_1; x_2) = \frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{-1}{(x_1 - 1)(x_2 - 1)}$

- b) En déduire la monotonie de la fonction f sur les intervalles $I=\left]-\infty;1\right[$ et $J=\left]1;+\infty\right[$.
- 3) Dresser le tableau de variation de f
- 4) Comparer les deux nombres : $\frac{\sqrt{2}}{\sqrt{2}-1}$ et $\frac{\sqrt{3}}{\sqrt{3}-1}$

Exercice 9: (**) Soit f une fonction numérique tel que : $f(x) = \frac{-2x+1}{2x-4}$

- $\left(C_{f}
 ight)$ Sa courbe représentative dans le repère $\left(O; ec{i}; ec{j}
 ight)$
- 1) Déterminer D_f 2) Ecrire f(x) sous la forme : $f(x) = \beta + \frac{k}{x+\alpha}$ (déterminer α et β et k)

PROF: ATMANI NAJIB

- 3) En déduire la nature de $(C_{\scriptscriptstyle f})$ et ses éléments caractéristiques
- 4) Dresser le Tableau de variations de f
- 5) Tracer la courbe représentative (C_f) dans le repère $(O; \vec{i}; \vec{j})$

Exercice 10 : (***) Soient f et g les deux fonctions définies par :

 $f(x) = -x^2 - 2x + 3$ et $g(x) = \frac{x-1}{x+2}$ et (C_f) et (C_g) Les courbes représentatives de f et g

1) Déterminer l'ensemble de définition des fonctions f et g

2) a) Vérifier que :
$$f(x) = -(x+1)^2 + 4$$
 si $x \in D_f$

b) Vérifier que :
$$g(x) = 1 - \frac{3}{x+2}$$
 si $x \in D_g$

- 3)a) Donner la nature de la courbe de f et ces éléments caractéristique
- b) Dresser le tableau de variation de f
- 4)a) Donner la nature de la courbe de g et ces éléments caractéristique
- b) Dresser le tableau de variation de g
- 5)a) Trouver les points d'intersection de la courbe $\left(C_{_f}\right)$ avec l'axe des abscisses
- b) Trouver le point d'intersection de la courbe $\left(C_{_g}\right)$ avec l'axe des abscisses
- 6)Tracer Les courbes représentatives $(C_{_f})$ et $(C_{_g})$ dans le même repère
- 7)a) Résoudre graphiquement l'équation f(x) = g(x)
- b) Résoudre graphiquement l'inéquation $f(x) \ge g(x)$

Exercice 11 : (***): Soient f et g deux fonctions définies par Les courbes représentatives (C_f) et (C_g) si dessous :



1) Déterminer D_f et D_g

2) On pose :
$$f(x) = ax^2 + bx + c$$
 et $g(x) = \frac{x + \alpha}{x + 2}$

Graphiquement:

- a) Déterminer les points d'intersections de $\left(C_{_f}
 ight)$ et $\left(C_{_g}
 ight)$
- b) Résoudre l'équation f(x) = g(x)
- c) Résoudre l'inéquation f(x) > g(x)
- d) Dresser les tableaux de variations de f et g
- 3) a) Montrer que : $f(x) = x^2 + x 2$
- b) Montrer que : $g(x) = \frac{x-1}{x+2}$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

PROF: ATMANI NAJIB