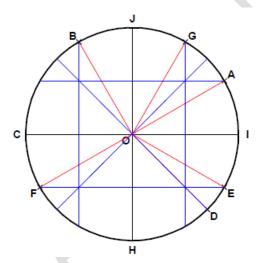
http://www.xriadiat.com/

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Série N°1: TRIGONOMÉTRIE1

(La correction voir http://www.xriadiat.com/)


Exercice1: (*) 1) Donner la mesure en radians de l'angle de mesure 30°.

- 2) Donner la mesure en degrés de l'angle de mesure $\frac{3\pi}{\circ}$ rad.
- 3) Donner la mesure en radians de l'angle de mesure 135°.
- 4) Donner la mesure en degrés de l'angle de mesure 1 rad
- 5) Convertir en radians les mesures suivantes : 0°; 30°; 45°; 60°; 90°; 180°; 360°

Exercice2: (*) Calculer la longueur L de l'arc AB d'un cercle (C) de rayon R = 3cm et tel que :

$$\alpha = \left(\overline{AOB}\right) = \frac{\pi}{3} rad$$

Exercice3: (*) Sur le cercle trigonométrique ci-contre, déterminer un abscisse curviligne associés aux points : A; B; C; D; E; F; G; H; I; J

Exercice4: (*) 1) Déterminer l'abscisse curviligne principale de chacune des abscisses

suivantes :a) $x_1 = -6\pi$ b) $x_2 = \frac{31\pi}{3}$ c) $x_3 = \frac{-23\pi}{6}$ d) $x_4 = \frac{127\pi}{4}$

2) Placer sur le cercle trigonométrique les points : $A(x_1)$; $B(x_2)$; $C(x_3)$; $D(x_4)$

Exercice5: (**) Soit sur un cercle trigonométrique un point A d'abscisse curviligne principale $\alpha = \frac{\pi}{4}$ et ce point tourne sur ce cercle.

Quel est le nombre de tours effectués par ce point si $x = \frac{65\pi}{4}$ est son abscisse curviligne.

Exercice6: (**) Dans chacun des cas suivants, donner trois autres réels associés au même point sur le cercle trigonométrique :1) $A\left(-\pi\right)$ 2) $B\left(\frac{3\pi}{2}\right)$ 3) $C\left(10\pi\right)$ 4) $D\left(-\frac{\pi}{4}\right)$

Exercice7: (**) Dans chacun des cas suivants

Déterminer si x et y sont des abscisses curvilignes d'un même point.

1)
$$x = \frac{\pi}{2}$$
 et $y = -\frac{3\pi}{2}$

2)
$$x = -\frac{5\pi}{4}$$
 et $y = \frac{3\pi}{4}$

3)
$$x = \frac{2\pi}{3}$$
 et $y = \frac{8\pi}{3}$

PROF: ATMANI NAJIB

1)
$$x = \frac{\pi}{2}$$
 et $y = -\frac{3\pi}{2}$ 2) $x = -\frac{5\pi}{4}$ et $y = \frac{3\pi}{4}$ 3) $x = \frac{2\pi}{3}$ et $y = \frac{8\pi}{3}$ 4) $x = -\frac{5\pi}{12}$ et $y = \frac{43\pi}{12}$

Exercice8: (**) Placer sur un cercle trigonométrique d'origine I

Les points d'abscisses curvilignes : $\frac{\pi}{3} + \frac{k\pi}{2}$ avec $k \in \mathbb{Z}$

Exercice9: (**) Soit sur un cercle trigonométrique d'origine I les points A; B; C; D d'abscisses curvilignes respectifs : $\frac{85\pi}{3}$; $\frac{-139\pi}{6}$; $\frac{7\pi}{4}$; $\frac{11\pi}{6}$.

- 1) Placer sur le cercle trigonométrique ces points
- 2) En déduire les mesures des angles orientés :

$$\left(\overrightarrow{OI}\;;\overrightarrow{OA}\right)\;;\;\left(\overrightarrow{OI}\;;\overrightarrow{OB}\right)\;;\;\left(\overrightarrow{OA}\;;\overrightarrow{OB}\right)\;;\;\left(\overrightarrow{OI}\;;\overrightarrow{OC}\right)\;;\;\left(\overrightarrow{OI}\;;\overrightarrow{OD}\right)$$

Exercice10: (**) *ABC* est un triangle rectangle en *A* direct, tel que $(\overline{BA}; \overline{BC}) = -\frac{\pi}{6}[2\pi]$ et *ACD*

est un triangle équilatéral direct.

PROF: ATMANI NAJIB

- 1) Faire une figure.
- 2) Déterminer la mesure principale des angles suivant : $(\overrightarrow{AD}; \overrightarrow{AB}); (\overrightarrow{DC}; \overrightarrow{AC}); (\overrightarrow{DC}; \overrightarrow{BA});$

$$(\overrightarrow{CA}; \overrightarrow{CB})$$

Exercice11: (**) \vec{u} ; \vec{v} ; \vec{w} et \vec{k} des vecteurs tel que :

$$\overline{\left(\overrightarrow{u};\overrightarrow{v}\right)} \equiv \frac{\pi}{2} [2\pi] ; \; \left(\overline{\overrightarrow{w};\overrightarrow{v}}\right) \equiv -\frac{\pi}{3} [2\pi] ; \; \left(\overline{\overrightarrow{k};\overrightarrow{w}}\right) \equiv \frac{\pi}{4} [2\pi]$$

Déterminer les mesures de l'angle orienté suivant : $(\vec{u}; \vec{k})$

Exercice12: (**)

Calculer les rapports trigonométriques des nombre réel suivants : 7π , $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{3\pi}{4}$

Exercice13: (**) Calculer:
$$A = \sin\left(\frac{53\pi}{6}\right)$$
; $B = \cos\left(-\frac{29\pi}{6}\right)$; $C = \tan\left(\frac{22\pi}{3}\right)$

$$D = \sin(2024\pi)$$
 ; $E = \cos\left(\frac{35\pi}{4}\right)$; $F = \tan\left(-\frac{16\pi}{3}\right)$

$$G = \sin\left(-\frac{19\pi}{4}\right)$$
 ; $H = \cos\left(\frac{37\pi}{2}\right)$; $K = \tan\left(2025\pi\right)$

Exercice14: (**) Montrer que :
$$1 + \tan^2 x = \frac{1}{\cos^2 x}$$
 si : $x \neq \frac{\pi}{2} + k\pi$

Exercice15: (**) On a :
$$\sin x = -\frac{4}{5}$$
 et $-\frac{\pi}{2} < x < \frac{\pi}{2}$

Calculer: $\cos x$ et $\tan x$

Exercice16: (**) On a :
$$\tan(x) = \frac{1}{3}$$
 et $\frac{\pi}{2} < x < \pi$

Calculer: 1)
$$\cos x$$
 2) $\sin x$

Exercice17: (*) 1) Calculer en fonction de : $\sin x$ et $\cos x$ les expressions suivantes :

$$A(x) = \sin(-x) - \cos(-x)$$
 ; $B(x) = \sin(\pi + x) + \cos(\pi + x)$; $C(x) = \sin(3\pi + x) + \cos(2\pi + x)$

PROF: ATMANI NAJIB

$$D(x) = \cos(\pi + x) + \sin(-x) + \sin(x - 4\pi)$$

Exercice18: (**)1) Calculer en fonction de : $\sin x$ et $\cos x$ les expressions suivantes :

$$A(x) = \sin\left(\frac{\pi}{2} - x\right) + \cos\left(3\pi - x\right) + \sin\left(x - \frac{\pi}{2}\right) \quad ; \quad B(x) = \cos\left(\frac{\pi}{2} + x\right) + \sin\left(-\frac{\pi}{2} - x\right) + \sin\left(x - \frac{3\pi}{2}\right)$$

$$C(x) = \cos\left(\frac{5\pi}{2} - x\right) - 2\sin(\pi - x) + 4\sin(\pi + x)$$

Exercice19: (***) 1) Simplifier l'expression suivante :

$$A(x) = \sin^2\left(\frac{\pi}{2} - x\right) - \cos\left(-x + 6\pi\right) + \cos\left(3\pi + x\right) + \sin\left(x - \frac{7\pi}{2}\right)$$

- 1) Montrer que : $A(x) = \cos^2 x \cos x$
- 2) Calculer $A\left(\frac{3\pi}{4}\right)$ et $A\left(-\frac{10\pi}{3}\right)$
- 3)a) Calculer en fonction de $\sin x$ le nombre : $A = \frac{\cos\left(\frac{3\pi}{2} x\right)\cos(4\pi x)}{\tan\left(\frac{3\pi}{2} x\right)}$.
- b) En déduire la valeur de A si $\tan x = 3$

Exercice20: (**)1) Sachant que : $\cos\left(\frac{9\pi}{5}\right) = \frac{\sqrt{5}+1}{4}$, calculer la valeur de $\sin\left(\frac{9\pi}{5}\right)$

2) En déduire $\cos\left(\frac{\pi}{5}\right)$ et $\sin\left(\frac{\pi}{5}\right)$

Exercice21: (***) Simplifier les expressions suivantes :

$$A = \cos\left(\frac{\pi}{5}\right) + \sin\left(\frac{\pi}{5}\right) + \cos\left(\frac{4\pi}{5}\right) - 2\sin\left(\frac{4\pi}{5}\right) + \cos\left(\frac{3\pi}{10}\right)$$

$$B = \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{7\pi}{8} + \cos^2 \frac{5\pi}{8}$$

$$C = \sin^{2}\left(\frac{\pi}{12}\right) + \sin^{2}\left(\frac{3\pi}{12}\right) + \sin^{2}\left(\frac{5\pi}{12}\right) + \sin^{2}\left(\frac{7\pi}{12}\right) + \sin^{2}\left(\frac{9\pi}{12}\right) + \sin^{2}\left(\frac{11\pi}{12}\right)$$

Exercice22: (**) Simplifier les expressions suivantes : $x \in \mathbb{R}$

$$A = (\cos x + \sin x)^2 + (\cos x - \sin x)^2$$

$$B = \cos^4 x - \sin^4 x + \sin^2 x - \cos^2 x$$

$$C = \sin^4 x - \cos^4 x + 2\cos^2 x$$

$$D = \sin^6 x + \cos^6 x + \cos^4 x + \sin^4 x + 5\cos^2 x \sin^2 x$$

Exercice23: (***) Ecrire seulement en fonction de $\tan x$ les expressions suivantes :

$$1) A = \frac{\sin^3 x - \cos^3 x}{\sin x + \cos x}$$

2)
$$B = \frac{\sin^2 x + 3\sin x \cos x}{\sin^2 x - \cos^2 x}$$

$$3) C = \cos^2 x - \sin x \cos x$$

PROF: ATMANI NAJIB

Exercice24: (**) A partir du triangle de la figure suivante, trouvez :

- a) la valeur du côté a
- b) la mesure de l'angle B;
- c) la valeur du côté b.

Exercice25: (**) ABC un triangle tel que :

$$BC = \sqrt{3}$$
 et $BCA = \frac{\pi}{4}$ et $BAC = \frac{\pi}{3}$

- 1) Calculer: AB
- 2) a) Vérifier que : $ABC = \frac{5\pi}{12}$
- b) Calculer : $\sin \frac{5\pi}{12}$ sachant que : $AC = \frac{\sqrt{6} + \sqrt{2}}{2}$ et en déduire la valeur de $\cos \frac{\pi}{12}$

首

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

<u>3</u>