http://www.xriadiat.com/

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Correction Série N°2:

Equations et inéquations et systèmes partie3 : Equation du second degré

Exercice1: (*) et (**) Résoudre dans \mathbb{R} les équations suivantes :1) $x^2 = 16$ 2) $x^2 = -8$

3)
$$(x+2)^2 = 9$$

4)
$$5x^2 - 4x = 0$$

4)
$$5x^2 - 4x = 0$$
 5) $3x^2 - x - 2 = 0$ (On peut utiliser l'écriture canonique)

6)
$$x^2 - 9 + 5(x+3) = 0$$

Solution :1) L'équation : $x^2 = 16$

16 est positif donc l'équation admet deux solutions $x = \sqrt{16} = 4$ et. $x = -\sqrt{16} = -4$

Donc l'ensemble de toutes les solutions est : $S = \{-4, 4\}$

2) L'équation : $x^2 = -8$ -8 est négatif donc l'équation n'a pas de solution dans \mathbb{R} .

Donc: $S = \emptyset$

3) L'équation :
$$(x+2)^2 = 9$$

On a alors $x+2=3$ ou . $x+2=-3$

L'équation admet deux solutions x = 1 et x = -5. Donc l'ensemble de toutes les solutions est : $S = \{-5, 1\}$

4)
$$5x^2 - 4x = 0$$
 Signifie que : $x(5x - 4) = 0$

Soit:
$$x = 0$$
 ou $5x - 4 = 0$ c'est-à-dire: $x = 0$ ou $x = \frac{4}{5}$

Donc l'ensemble de toutes les solutions est : $S = \left\{0; \frac{4}{5}\right\}$

5)
$$3x^2 - x - 2 = 0$$
: On va d'abord Factoriser les trinômes $3x^2 - x - 2$

$$3x^{2} - x - 2 = 3\left(x^{2} - \frac{1}{3}x - \frac{2}{3}\right) = 3\left(x^{2} - 2\frac{1}{2 \times 3}x + \left(\frac{1}{6}\right)^{2} - \left(\frac{1}{6}\right)^{2} - \frac{2}{3}\right)$$

$$3x^{2} - x - 2 = 3\left(x^{2} - \frac{1}{3}x - \frac{2}{3}\right) = 3\left(\left(x - \left(\frac{1}{6}\right)\right)^{2} - \frac{25}{36}\right)$$

$$3x^2 - x - 2 = 3\left(\left(x - \left(\frac{1}{6}\right)\right)^2 - \frac{25}{36}\right)$$
 Cette écriture s'appelle la forme canonique

$$3x^2 - x - 2 = 3\left(x - \frac{1}{6} - \frac{5}{6}\right)\left(x - \frac{1}{6} + \frac{5}{6}\right) = 3\left(x - 1\right)\left(x + \frac{2}{3}\right)$$

Donc:
$$3x^2 - x - 2 = 3(x-1)\left(x + \frac{2}{3}\right)$$
 la forme factorisée

$$3x^2 - x - 2 = 0$$
 Signifie que : $(x-1)(x+\frac{2}{3}) = 0$

On a alors
$$x-1=0$$
 ou $x+\frac{2}{3}=0$

L'équation admet deux solutions
$$x=1$$
 et $x=-\frac{2}{3}$

Donc l'ensemble de toutes les solutions est : $S = \left\{-\frac{2}{3}; 1\right\}$

6)
$$x^2-9+5(x+3)=0$$
 Signifie que : $x^2-3^2+5(x+3)=0$ Signifie que : $(x+3)(x-3)+5(x+3)=0$

Signifie que : (x+3)[(x-3)+5]=0 Signifie que : (x+3)(x+2)=0 Signifie que : x+3=0 ou x+2=0

Signifie que : x = -3 ou x = -2

Donc l'ensemble de toutes les solutions est : $S = \{-3, -2\}$

Exercice2: (**) Déterminer la forme canonique des trinômes suivants :

1)
$$5x^2 + 20x - 65$$

2)
$$3x^2 - x - 2$$

Solution :1) Pour écrire $5x^2 + 20x - 65$ sous forme canonique on commence par factoriser le trinôme par le coefficient qui est devant x^2 : On obtient $5(x^2+4x-13)$

Puis on doit transformer : $x^2 + 4x - 13$ en factorisant avec les identités remarquables :

Pour cela on utilise les deux premiers termes de $x^2 + 4x - 13$ (x^2 correspond à a^2 et 4x à 2ab)

Donc: a = x et 2ab = 4x c'est-à-dire: b = 2.

Donc:
$$x^2 + 4x - 13 = (x+2)^2 - \dots -13$$

Si on développe $(x+2)^2$ on obtient x^2+4x+4

Pour avoir seulement $x^2 + 4x$ on doit retrancher 4.

Donc:
$$x^2 + 4x - 13 = (x+2)^2 - 4 - 13 = (x+2)^2 - 17$$

Donc:
$$5x^2 + 20x - 65 = 5 \left[(x+2)^2 - 17 \right]$$

Donc:
$$5x^2 + 20x - 65 = 5(x+2)^2 - 85$$

$$5(x+2)^2 - 85$$
 est la forme canonique de $5x^2 + 20x - 65$

2)
$$3x^2 - x - 2$$
: Autre méthode pour déterminer la forme canonique :

Calculons le discriminant de :
$$3x^2 - x - 2 = ax^2 + bx + c$$
 : $a = 3$; $b = -1$; $c = -2$

Donc:
$$\Delta = b^2 - 4 \times a \times c = (-1)^2 - 4 \times 3 \times (-2) = 1 + 24 = 25 > 0$$

La forme canonique de : $ax^2 + bx + c$ en générale est :

$$ax^2 + bx + c = a\left[\left(x - \alpha\right)^2 + \beta\right]$$
 Avec $\alpha = -\frac{b}{2a}$ et $\beta = -\frac{\Delta}{4a^2}$

La forme canonique de $3x^2 - x - 2$ est

$$3x^2 - x - 2 = 3[(x - \alpha)^2 + \beta]$$
 $\alpha = -\frac{b}{2a} = -\frac{-1}{2 \times 3} = \frac{1}{6}$ et $\beta = -\frac{\Delta}{4a^2} = -\frac{25}{4 \times 3^2} = -\frac{25}{36}$

Donc:
$$3x^2 - x - 2 = 3\left(x - \frac{1}{6}\right)^2 - \frac{25}{36}$$
: La forme canonique

Exercice3: (*) Résoudre dans \mathbb{R} les équations suivantes et Factoriser les trinômes :

a)
$$2x^2 - x - 6 = 0$$

a)
$$2x^2 - x - 6 = 0$$
 b) $2x^2 - 3x + \frac{9}{8} = 0$ c) $x^2 + 3x + 10 = 0$ d) $6x^2 - x - 1 = 0$

c)
$$x^2 + 3x + 10 = 0$$

d)
$$6x^2 - x - 1 = 0$$

PROF: ATMANI NAJIB

Solution :a) Calculons le discriminant de l'équation $2x^2 - x - 6 = 0$: a = 2, b = -1 et c = -6

Donc:
$$\Delta = b^2 - 4ac = (-1)^2 - 4 \times 2 \times (-6) = 49$$
.

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-1) - \sqrt{49}}{2 \times 2} = -\frac{3}{2} \quad \text{et} \quad x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-1) + \sqrt{49}}{2 \times 2} = 2 \quad \text{donc} : S = \left\{-\frac{3}{2}; 2\right\}$$

Et le trinôme
$$2x^2 - x - 6$$
 a une forme factorisée : $2x^2 - x - 6 = a\left(x - \left(-\frac{3}{2}\right)\right)(x - 2)$

C'est-à-dire :
$$2x^2 - x - 6 = a\left(x + \frac{3}{2}\right)(x - 2)$$

b) Calculons le discriminant de l'équation
$$2x^2 - 3x + \frac{9}{8} = 0$$
: $a = 2$, $b = -3$ et $c = \frac{9}{8}$

Donc :
$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times \frac{9}{8} = 0$$
.

Comme
$$\Delta = 0$$
, l'équation possède une seule solution (dite double): $x_0 = -\frac{b}{2a} = -\frac{-3}{2 \times 2} = \frac{3}{4}$

Donc:
$$S = \left\{ \frac{3}{4} \right\}$$
 et le trinôme $2x^2 - 3x + \frac{9}{8}$ a une forme factorisée: $2x^2 - 3x + \frac{9}{8} = 2\left(x - \frac{3}{4}\right)^2$

c) Calculons le discriminant de l'équation
$$x^2 + 3x + 10 = 0$$
: $a = 1, b = 3$ et $c = 10$

Donc :
$$\Delta = b^2 - 4ac = 3^2 - 4 \times 1 \times 10 = -31$$
.

Comme
$$\Delta < 0$$
, l'équation ne possède pas de solution réelle c'est-à-dire : $S = \emptyset$

d)
$$6x^2 - x - 1 = 0$$
. On a: $\Delta = 1 + 24 = 25$: $x_1 = \frac{1+5}{12} = \frac{1}{2}$ et $x_2 = \frac{1-5}{12} = -\frac{1}{3}$

Donc:
$$S = \left\{-\frac{1}{3}; \frac{1}{2}\right\}$$
 par suite: $R(x) = 6\left(x - \frac{1}{2}\right)\left(x + \frac{1}{3}\right)$

Exercice4: (*) Factoriser les trinômes : a)
$$4x^2 + 19x - 5$$
 b) $9x^2 - 6x + 1$

Solution : a) On cherche les racines du trinôme
$$4x^2 + 19x - 5$$
:

Calcul du discriminant :
$$\Delta = 19^2 - 4 \times 4 \times (-5) = 441$$

Les racines sont :
$$x_1 = \frac{-19 - \sqrt{441}}{2 \times 4} = -5$$
 et $x_2 = \frac{-19 + \sqrt{441}}{2 \times 4} = \frac{1}{4}$

On a donc:
$$4x^2 + 19x - 5 = 4(x - (-5))(x - \frac{1}{4}) = (x + 5)(4x - 1)$$
.

b) On cherche les racines du trinôme
$$9x^2 - 6x + 1$$
: Calcul du discriminant : $\Delta = (-6)^2 - 4 \times 9 \times 1 = 0$

Comme
$$\Delta = 0$$
, le trinôme possède une seule racine (dite racine double): $x_0 = -\frac{b}{2a} = -\frac{-6}{2 \times 9} = \frac{1}{3}$:

Et le trinôme
$$9x^2 - 6x + 1$$
 a une forme factorisée : $9x^2 - 6x + 1 = 9\left(x - \frac{1}{3}\right)^2$

Exercice5: (***) Soit le trinôme
$$(T)$$
: $-2x^2 + \sqrt{2}x + 2$

1) Prouver que le trinôme
$$(T)$$
 admet deux racines distinctes α et β sans les calculer

2) Déduire les valeurs suivantes :
$$\alpha + \beta$$
; $\alpha \times \beta$; $\frac{1}{\alpha} + \frac{1}{\beta}$; $\alpha^2 + \beta^2$; $\frac{\beta}{\alpha} + \frac{\alpha}{\beta}$; $\alpha^3 + \beta^3$

Solution: 1):
$$a = -2$$
 et et $b = \sqrt{2}$ et $c = 2$

$$\Delta = b^2 - 4ac = (\sqrt{2})^2 - 4 \times 2 \times (-2) = 2 + 16 = 18 > 0$$

Comme
$$\Delta > 0$$
: le trinôme (T) : a deux racines distinctes : α et β

2) on a:
$$\alpha + \beta = -\frac{b}{a}$$
 et $\alpha \times \beta = \frac{c}{a}$ donc $\alpha + \beta = -\frac{\sqrt{2}}{-2} = \frac{\sqrt{2}}{2}$ et $\alpha \times \beta = \frac{2}{-2} = -1$

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta} = \frac{\frac{\sqrt{2}}{2}}{-1} = -\frac{\sqrt{2}}{2}$$

On a: $(\alpha + \beta)^2 = \alpha^2 + 2\alpha\beta + \beta^2$ donc $(\alpha + \beta)^2 - 2\alpha\beta = \alpha^2 + \beta^2$ c'est-à-dire: $\alpha^2 + \beta^2 = \frac{1}{2} + 2 = \frac{5}{2}$

On a: $\frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{\beta^2 + \alpha^2}{\alpha\beta}$ donc $\frac{\beta}{\alpha} + \frac{\alpha}{\beta} = \frac{\overline{2}}{-1} = -\frac{5}{2}$

On a: $(\alpha + \beta)^3 = \alpha^3 + 3\alpha^2\beta + 3\alpha\beta^2 + \beta^3$ donc $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha^2\beta - 3\alpha\beta^2$

donc $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$

donc $\alpha^3 + \beta^3 = \left(\frac{\sqrt{2}}{2}\right)^3 - 3(-1)\left(\frac{\sqrt{2}}{2}\right)$

Donc: $\alpha^3 + \beta^3 = \frac{\sqrt{2}^3}{2^3} + \frac{3\sqrt{2}}{2} = \frac{2\sqrt{2}}{8} + \frac{3\sqrt{2}}{2} = \frac{2\sqrt{2} + 12\sqrt{2}}{8} = \frac{14\sqrt{2}}{8} = \frac{7\sqrt{2}}{4}$

Exercice6: (**) Donner une équation du second degré qui a pour solutions : α et β dans les cas

suivants :1) $\alpha = 1$ et $\beta = -2$ 2) $\alpha = -1$ et $\beta = \sqrt{2}$ 3) $\alpha = -\frac{1}{2}$ et $\beta = \frac{1}{2}$

Solution : On sait que : Si x_1 et x_2 sont les racines du trinôme alors ils sont solutions de l'équation :

 $x^{2} - sx + p = 0 \text{ avec}: \begin{cases} x + y = s \\ x \times y = p \end{cases}$

1) On a : $\alpha = 1$ et $\beta = -2$ solutions de l'équation du second degré donc : $x^2 - (1 + (-2))x + 1 \times (-2) = 0$

C'est-à-dire : $x^2 + x - 2 = 0$

2) On a : $\alpha = -1$ et $\beta = \sqrt{2}$ solutions de l'équation du second degré donc : $x^2 - \left(-1 + \sqrt{2}\right)x + \sqrt{2} \times \left(-1\right) = 0$

C'est-à-dire : $x^2 + (1 - \sqrt{2})x - \sqrt{2} = 0$

3) On a : $\alpha = -\frac{1}{2}$ et $\beta = \frac{1}{2}$ solutions de l'équation du second degré

Donc: $x^2 - \left(\frac{1}{3} + \left(-\frac{1}{2}\right)\right)x + \frac{1}{3} \times \left(-\frac{1}{2}\right) = 0$ signifie que: $x^2 - \frac{1}{6}x - \frac{1}{6} = 0$

C'est-à-dire : $6x^2 - x - 1 = 0$

Exercice7: (***) Sans calculer le discriminant Δ résoudre les équations suivantes :

2) $4x^2 + 2(\sqrt{2} - 1)x - \sqrt{2} = 0$ 1) $x^2 + x - 6 = 0$

Solution : On sait que : les solutions de l'équation : $x^2 - (\alpha + \beta)x + \alpha \times \beta = 0$ sont : $x_1 = \alpha$ et $x_2 = \beta$

1) $x^2 + x - 6 = 0$ signifie que : $x^2 - (2 + (-3))x + 2 \times (-3) = 0$

C'est-à-dire : $x_1 = 2$ et $x_2 = -3$ par suite : $S = \{-3, 2\}$

2) $4x^2 + 2(\sqrt{2} - 1)x - \sqrt{2} = 0$ signifie que : $x^2 + \frac{2(\sqrt{2} - 1)}{4}x - \frac{\sqrt{2}}{4} = 0$

Signifie que : $x^2 + \left(\frac{\sqrt{2}}{2} - \frac{1}{2}\right)x - \frac{\sqrt{2}}{4} = 0$ c'est-à-dire : $x^2 - \left(\frac{1}{2} + \left(-\frac{\sqrt{2}}{2}\right)\right)x + \frac{1}{2} \times \left(-\frac{\sqrt{2}}{2}\right) = 0$

C'est-à-dire : $x_1 = \frac{1}{2}$ et $x_2 = -\frac{\sqrt{2}}{2}$ par suite : $S = \left\{-\frac{\sqrt{2}}{2}; \frac{1}{2}\right\}$

Exercice8: (**) Résoudre dans \mathbb{R} l'équation : (E) ; $\frac{x^2 - 3x + 4}{x^2 + 5} = 2$

Corrigé: Partie1: L'ensemble de définition de l'équation (E) est donc $D_E = \{-5\}$.

Partie2: $\frac{x^2 - 3x + 4}{x + 5} = 2$ Equivalt à: $\frac{x^2 - 3x + 4}{x + 5} - 2 = 0$

Equivaut à : $\frac{x^2 - 3x + 4}{x + 5} - \frac{2x + 10}{x + 5} = 0$

Equivaut à : $\frac{x^2 - 5x - 6}{x + 5} = 0$

Equivaut à : $x^2 - 5x - 6 = 0$

 $\Delta = 49 > 0$ donc $x^2 - 5x - 6 = 0$ admet deux solutions Distinctes $x_1 = -1$ et $x_2 = 6$

Ainsi, l'ensemble solution de (E) est $S = \{-1, 6\}$ (car les solutions trouvées sont différentes de -5).

Exercice9: (***) Combien mesure la longueur d'un rectangle de périmètre 56 cm et d'aire 192 cm²?

Réponse : Posons l="la longueur du rectangle" et L="la largeur du rectangle"

On doit résoudre le système : $\begin{cases} 2l + 2L = 56 \\ l \times L = 192 \end{cases}$

Isolons L dans la première équation : On a : 2l+2L=56 donc 2L=56-2l c'est-à-dire : $L=\frac{56-2l}{2}$

Donc: L = 28 - l

Remplaçons maintenant cette valeur de L dans la deuxième équation.

 $l \times L = 192$ Donc: $l \times (28 - l) = 192$

Donc : $28l - l^2 = 192$ Donc : $-l^2 + 28l - 192 = 0$: on obtient une équation du deuxième degré.

Calculons delta : $\Delta = 28^2 - 4 \times (-1) \times (-192) = 784 - 768 = 16$

L'équation admet donc deux solutions :

 $l_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-28 - \sqrt{16}}{-2} = \frac{-28 - 4}{-2} = \frac{-32}{-2} = 16$ Et $l_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-28 + \sqrt{16}}{-2} = \frac{-28 + 4}{-2} = \frac{-24}{-2} = 12$

Les deux valeurs possibles pour la longueur sont 16 et 12.

Le produit de ces deux nombres vaut 192

Donc 16 et 12 correspondent bien à la longueur et à la largeur du rectangle.

La longueur de ce rectangle mesure donc 16 centimètres.

Exercice10: (***) A)1) Résoudre dans \mathbb{R} les équations suivantes : $2x^2 - 3x - 2 = 0$

2) En déduire les solutions des équations suivantes :

a) $2x-3\sqrt{x}-2=0$ b) $2x^2-3|x|-2=0$

c) $2x^4 - 3x^2 - 2 = 0$ d) $2x^3 - 3x^2 = 2x$

PROF: ATMANI NAJIB

B) 1) Résoudre dans \mathbb{R} les équations suivantes : $x^2 + x - 6 = 0$ et $x^2 - x - 2 = 0$

2) En déduire les solutions de l'équation suivante :

 $(E): x^2 - |x-2| - 4 = 0$

Solution: A)1) $2x^2 - 3x - 2 = 0$

Calculons le discriminant de l'équation $2x^2-3x-2=0$: a=2, b=-3 et c=-2

Donc: $\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times (-2) = 25$.

Comme $\Delta > 0$, l'équation possède deux solutions distinctes : $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-3) - \sqrt{25}}{2 \times 2} = -\frac{1}{2}$

 $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-3) + \sqrt{25}}{2 \times 2} = 2 \text{ Donc } : S = \left\{-\frac{1}{2}; 2\right\}$

2) 2) $2x-3\sqrt{x}-2=0$ avec $x \ge 0$

$$2x-3\sqrt{x}-2=0$$
 Equivalent a: $2(\sqrt{x})^2-3\sqrt{x}-2=0$ car $\sqrt{x}^2=x$

Faisons un changement de variable en posant : $X = \sqrt{x}$

Nous obtenons l'équation : $2X^2 - 3X - 2 = 0$

Donc : d'après A) 1) on a : $X = -\frac{1}{2}$ ou X = 2

Equivalent à :
$$\sqrt{x} = -\frac{1}{2}$$
 ou $\sqrt{x} = 2$

Mais l'équation : $\sqrt{x} = -\frac{1}{2}$ n'a pas de solutions dans \mathbb{R}

$$\sqrt{x} = 2$$
 Signifie: $(\sqrt{x})^2 = 2^2$ c'est-à-dire: $x = 4$ et par suite: $S = \{4\}$.

2) b)
$$2x^2 - 3|x| - 2 = 0$$
 Equivalent à : $2|x|^2 - 3|x| - 2 = 0$ car $|x|^2 = x^2$

Faisons un changement de variable en posant : X = |x| nous obtenons l'équation : $2X^2 - 3X - 2 = 0$

Donc: d'après A) 1) on a :
$$x = -\frac{1}{2}$$
 ou $x = 2$ qui est équivalent a: $|x| = -\frac{1}{2}$ ou $|x| = 2$

Mais l'équation : $|x| = -\frac{1}{2}$ n'a pas de solutions dans \mathbb{R}

$$|x| = 2$$
 Signifie: $x = 2$ ou $x = -2$ par suite: $S = \{-1, 1\}$

2) c)
$$2x^4 - 3x^2 - 2 = 0$$
 Equivalent a: $2(x^2)^2 - 3x^2 - 2 = 0$

Faisons un changement de variable en posant : $X = x^2$ nous obtenons donc : l'équation : $2X^2 - 3X - 2 = 0$

Donc : d'après A) 1) on a:
$$X = -\frac{1}{2}$$
 ou $X = 2$ et par suite : $x^2 = -\frac{1}{2}$ ou $x^2 = 2$

Mais l'équation : $x^2 = -\frac{1}{2}$ n'a pas de solutions dans \mathbb{R}

$$x^2 = 2$$
 Signifie: $x = \sqrt{2}$ ou $x = -\sqrt{2}$ par suite: $S = \{-\sqrt{2}; \sqrt{2}\}$.

d)
$$2x^3 - 3x^2 = 2x$$
 Equivalent à : $2x^3 - 3x^2 - 2x = 0$

Equivalent à :
$$x(2x^2-3x-2)=0$$

Equivalent à :
$$x = 0$$
 ou $2x^2 - 3x - 2 = 0$

Equivalent à :
$$x = 0$$
 ou $x_1 = -\frac{1}{2}$ ou $x_2 = 2$ et par suite : $S = \left\{-\frac{1}{2}; 0; 2\right\}$.

B) 1) Résolution dans
$$\mathbb{R}$$
 des équations suivantes : $x^2 + x - 6 = 0$ et $x^2 - x - 2 = 0$

Calculons le discriminant de l'équation
$$x^2 + x - 6 = 0$$
 : $a = 1$, $b = 1$ et $c = -6$

Donc :
$$\Delta = b^2 - 4ac = 1^2 - 4 \times 1 \times (-6) = 25$$
.

Comme
$$\Delta > 0$$
, l'équation possède deux solutions distinctes : $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1 - \sqrt{25}}{2 \times 1} = -3$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1 + \sqrt{25}}{2 \times 1} = 2$$
 Donc: $S = \{-3, 2\}$

Calculons le discriminant de l'équation $x^2 - x - 2 = 0$: a = 1, b = -1 et c = -2

Donc
$$\Delta = b^2 - 4ac = (-1)^2 - 4 \times 1 \times (-2) = 9$$
.

Comme
$$\Delta > 0$$
, l'équation possède deux solutions distinctes : $x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{1 - \sqrt{9}}{2 \times 1} = -1$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{1 + \sqrt{9}}{2 \times 1} = 2$$
 Donc: $S = \{-1, 2\}$

2) Déduction des solutions de l'équation suivante : (E): $x^2 - |x-2| - 4 = 0$

Etudions le signe de : x-2

$$\begin{array}{c|cccc} x & -\infty & 2 & +\infty \\ \hline x-2 & - & 0 & + \end{array}$$

Si $x \ge 2$ alors $x - 2 \ge 0$ donc : |x - 2| = x - 2

Donc: l'équation devient: $x^2 - (x-2) - 4 = 0$

Signifie: $x^2 - x + 2 - 4 = 0$ c'est-à-dire: $x^2 - x - 2 = 0$

Or: d'après B) 1) $x_1 = -1$ et $x_2 = 2$ mais: $x_1 = -1 \notin [2; +\infty[$ donc: $S_1 = \{2\}]$

Si x < 2 alors $x - 2 \le 0$ donc: |x - 2| = -(x - 2) = -x + 2

Donc: l'équation devient: $x^2 + (x-2) - 4 = 0$ c'est à dire: $x^2 + x - 2 - 4 = 0$

Signifie: $x^2 + x - 6 = 0$ Or: d'âpres B) 1) $x_1 = -3$ et $x_2 = 2$

Mais: $x_2 = 2 \notin]-\infty; 2[Donc: S_2 = \{-3\}]$

Par suite : $S = S_1 \cup S_2 = \{-3, 2\}$.

Exercice11: (**) Résoudre dans \mathbb{R} les équations suivantes :

1)
$$x^4 - 2x^2 + 1 = 0$$
 2) $3x^4 - 2x^2 - 1 = 0$

Solution: 1) $x^4 - 2x^2 + 1 = 0$

Faisons un changement de variable en posant : $X = x^2$ nous obtenons l'équation : $X^2 - 2X + 1 = 0$ $\Delta = (-2)^2 - 4 \times 1 \times 1 = 4 - 4 = 0$

La solution double de : $X^2 - 2X + 1 = 0$ est : $X = \frac{-(-2)}{2 \times 1} = \frac{2}{2} = 1$ Donc on a : $x^2 = 1$

Donc: x=1 ou x=-1 et par suite: $S = \{-1,1\}$

2)
$$3x^4 - 2x^2 - 1 = 0$$

Faisons un changement de variable en posant : $X = x^2$

Nous obtenons l'équation : $3X^2 - 2X - 1 = 0$

 $\Delta = (-2)^2 - 4 \times 3 \times (-1) = 4 + 12 = 16$

Les solutions de : $3X^2 - 2X - 1 = 0$ sont : $X_1 = \frac{-(-2) + 4}{2 \times 3} = \frac{6}{6} = 1$ et $X_2 = \frac{-(-2) - 4}{2 \times 3} = \frac{-2}{6} = \frac{-1}{3}$

Donc: $x^2 = 1$ et $x^2 = \frac{-1}{3}$

Or l'équation : $x^2 = \frac{-1}{3}$ n'a pas de solutions dans \mathbb{R}

Donc: on a x = 1 ou x = -1 par suite: $S = \{-1, 1\}$

Exercice12: (**) Factoriser les expressions suivantes : 1) $x^4 - 10x^2 + 25$ 2) $x^4 - 5x^2 + 6$

Solution: 1) $x^4 - 10x^2 + 25$ On pose: $X = x^2$

Donc : l'équation devient : $X^2 - 10X + 25$

$$\Delta = b^2 - 4ac = (-10)^2 - 4 \times 1 \times (25) = 100 - 100 = 0$$

Puisque : $\Delta = 0$ alors le trinôme admet une racine double : $x_1 = \frac{-(-10)}{2 \times 1} = \frac{10}{2} = 5$ donc : $X = \frac{-(-10)}{2 \times 1} = 5$

Par suite la factorisation est : $X^2 - 10X + 25 = a(X - X_1)^2$

Donc: $X^2 - 10X + 25 = (X - 5)^2$

Donc: $x^4 - 10x^2 + 25 = (x^2 - 5)^2 = (x - \sqrt{5})^2 (x + \sqrt{5})^2$

2) $x^4 - 5x^2 + 6$ On pose : $X = x^2$

 $X^{2}-5X+6$ $\Delta = (-5)^{2}-4 \times 1 \times 6 = 25-24 = 1$

Donc: $X_1 = \frac{-(-5)+1}{2 \times 1} = 3$ et $X_2 = \frac{-(-5)-1}{2 \times 1} = \frac{4}{2} = 2$

Donc: $X^2 - 5X + 6 = (X - 2)(X - 3)$

Donc: $x^4 - 5x^2 + 6 = (x^2 - 2)(x^2 - 3)$

Par suite: $x^4 - 5x^2 + 4 = (x - \sqrt{2})(x + \sqrt{2})(x - \sqrt{3})(x + \sqrt{3})$

Exercice13: (***) 1) Résoudre dans \mathbb{R} l'équation suivante : $x^2 - 7x - 8 = 0$

2) En déduire les solutions de l'équation suivante : $x^6 - 7x^3 - 8 = 0$

Solution : 1) Calculons le discriminant : $\Delta = b^2 - 4ac = 81 > 0$

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$x_1 = \frac{7-9}{2} = -1$$
 et $x_2 = \frac{7+9}{2} = 8$ donc : $S = \{-1, 8\}$

2)
$$x^6 - 7x^3 - 8 = 0$$
 Signifie que : $(x^3)^2 - 7(x^3) - 8 = 0$

Faisons un changement de variable en posant : $X = x^3$; nous obtenons l'équation : $X^2 - 7X - 8 = 0$

Donc: d'après 1) on a : X = -1 ou X = 8

Donc: $x^3 = -1$ ou $x^3 = 8$.

Equivalent a: x = -1 ou x = 2 par suite : $S = \{-1, 2\}$

Exercice14: (***) (Equations avec des racines carrées)

Résoudre dans \mathbb{R} ; l'équation suivante : $\sqrt{x-1} = x$

Corrigé : Remarque : La relation $a = b \Leftrightarrow a^2 = b^2$ n'est pas vraie si les deux nombres sont de signes contraires.

a) L'équation est définie si $x-1 \ge 0$ Signifie que : $x \ge 1$

L'équation est donc définie sur : $D_E = [1, +\infty]$

b) Je travaille par équivalence en m'assurant que les deux membres sont positifs avant d'élever au carré.

 $\sqrt{x-1} = x$ Signifie que : $\sqrt{x-1}^2 = x^2$ et $x \ge 0$

Signifie que : $x-1=x^2$ et $x \ge 0$

Signifie que : $x^2 - x + 1 = 0$ et $x \ge 0$

Le discriminant de : $x^2 - x + 1 = 0$ est : $\Delta = (-1)^2 - 4 \times 1 \times 1 = 1 - 4 = -3 < 0$ donc pas de solutions

Par conséquent : $S = \emptyset$

Exercice15 : (***) Résoudre dans $\mathbb R$ et discuter suivant le paramètre m l'équation suivante :

 $mx^2 - 2(m+2)x + m + 3 = 0$

Corrigé: $mx^2 - 2(m+2)x + m + 3 = 0$

1ére cas : m = 0 L'équation devient : -4x + 3 = 0 c'est à dire : $x = \frac{3}{4}$ et Par suite : $S = \left\{\frac{3}{4}\right\}$

2ére cas : $m \neq 0$ c'est une équation du second degré :

 $\Delta' = b'^2 - ac = (m+2)^2 - m \times (m+3) = m^2 + 4m + 4 - m^2 - 3m = m+4$

Si: m = -4 alors: $\Delta' = 0$

Donc: L'équation admet une solution unique: $x = \frac{-b'}{a} = \frac{m+2}{m} = \frac{-4+2}{-4} = \frac{1}{2}$ par suite: $S = \left\{\frac{1}{2}\right\}$

PROF: ATMANI NAJIB

8

Si : $m \succ -4 \ (m \neq 0)$ alors : $\Delta' \succ 0$ L'équation admet donc deux solutions :

$$x_1 = \frac{-b' - \sqrt{\Delta'}}{a} = \frac{m + 2 - \sqrt{m + 4}}{m}$$
 Et $x_2 = \frac{-b' + \sqrt{\Delta'}}{a} = \frac{m + 2 + \sqrt{m + 4}}{m}$

Par suite:
$$S = \left\{ \frac{m+2-\sqrt{m+4}}{m}; \frac{m+2+\sqrt{m+4}}{m} \right\}$$

Si: $m \prec -4$ alors: $\Delta' \prec 0$ l'équation n'a pas de solution dans \mathbb{R} . Donc: $S = \emptyset$

Exercice16: (*) Résoudre les inéquations suivantes :

a)
$$2x^2 - 3x + 1 \ge 0$$

a)
$$2x^2 - 3x + 1 \ge 0$$
 b) $-2x^2 + 4x - 2 \ge 0$ c) $3x^2 + 6x + 5 < 0$

c)
$$3x^2 + 6x + 5 < 0$$

Solution: a)
$$2x^2 - 3x + 1 \ge 0$$
 $a = 2$

Calculons le discriminant :
$$a = 2$$
, $b = -3$ et $c = 1$ donc

$$\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times 1 = 9 - 8 = 1 > 0$$

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$x_1 = \frac{-(-3) + \sqrt{1}}{2 \times 2} = \frac{3+1}{4} = 1$$
 et $x_2 = \frac{5 + \sqrt{9}}{2a} = \frac{3-1}{4} = \frac{1}{2}$

x	$-\infty$	1/2		1	$+\infty$
$2x^2-3x+1$	+	þ	_	þ	+

Donc:
$$S = \left[-\infty, \frac{1}{2}\right] \cup \left[1, +\infty\right[$$

b)
$$-2x^2 + 4x - 2 > 0$$

Étudions le signe du trinôme de :
$$P(x) = -2x^2 + 4x - 2$$
 $a = -2$

$$\Delta = b^2 - 4ac = (4)^2 - 4 \times (-2) \times (-2) = 16 - 16 = 0$$

Comme $\Delta = 0$, le trinôme possède une racine double: $x_1 = \frac{-(4)}{2 \times (-2)} = 1$

x	$-\infty$	1	$+\infty$
$-2x^2+4x-2$	_	þ	_

Donc:
$$S = \emptyset$$

c)
$$3x^2 + 6x + 5 > 0$$
. Étudions le signe du trinôme $P(x) = 3x^2 + 6x + 5$ $a = 3 > 0$

$$\Delta = b^2 - 4ac = (6)^2 - 4 \times 3 \times 5 = 36 - 60 = -24 < 0$$

x	$-\infty$ $+\infty$
$3x^2 + 6x + 5$	+

Donc: $S = \mathbb{R}$

Exercice17: (***)

Soit un rectangle de 6 cm par 10 cm. De combien de cm peut-on augmenter sa largeur et sa longueur pour que son périmètre reste inférieur à 96 cm?

Corrigé : Soit x la longueur ajoutée à la longueur et à la largeur. Le nouveau périmètre devient :

$$2(longueur + l arg eur) = 2((10+x)+(x+6)) = 2(2x+16) = 4x+32$$

Ce périmètre reste inférieur à 96 si :
$$4x+32 < 96 \Leftrightarrow 4x < 96-32 \Leftrightarrow x < 16$$

On ne peut allonger les longueur et largeur de plus de 16 cm si on souhaite un périmètre inférieur à 96 cm

Exercice18 : Déterminer le signe des expressions suivantes :

1)
$$B(x) = -\frac{1}{2}x - \frac{7}{3}$$

2)
$$D(x) = 4 - x^2$$

2)
$$D(x) = 4 - x^2$$
 3) $E(x) = x^2 - 3x + 4$

4)
$$H(x) = \frac{x^2+1}{1-x^2}$$

Corrigé :1)
$$B(x) = -\frac{1}{2}x - \frac{7}{3}$$

$$B(x) = 0$$
 Equivaut à: $-\frac{1}{2}x - \frac{7}{3} = 0$ Equivaut à: $x = -\frac{14}{3}$ on a: $a = -\frac{1}{2} < 0$

Le tableau du signe est :

\boldsymbol{x}	$-\infty$		$-\frac{14}{3}$		$+\infty$
B(x)		+	Ó	_	

• Si:
$$x \in \left[-\frac{14}{3}, +\infty \right]$$
 alors: $B(x) < 0$

• Si:
$$x \in \left[-\infty, -\frac{14}{3} \right]$$
 alors: $B(x) > 0$

• Si:
$$x = -\frac{14}{3}$$
 alors: $B(x) = 0$

2)
$$D(x) = 4 - x^2$$

$$D(x) = 0$$
 Equivaut à : $4 - x^2 = 0$ Equivaut à : $x^2 = 4$ Equivaut à : $x = \sqrt{4} = 2$ ou $x = -\sqrt{4} = -2$

On a : a = -1 < 0 donc d'après la règle du signe du trinôme :

x	$-\infty$		-2		2		$+\infty$
D(x)		-	Ò	+	Ò	_	

• Si:
$$x \in]-\infty, -2[\cup]2, +\infty[$$
 alors: $D(x) < 0$

• Si:
$$x \in]-2,2[$$
 alors: $D(x) > 0$

• Si:
$$x = -2$$
 ou $x = 2$ alors: $D(x) = 0$

3)
$$E(x) = x^2 - 3x + 4$$
: Le discriminant de : $x^2 - 3x + 4$ est : $\Delta = (-3)^2 - 4 \times 1 \times 4 = -7 < 0$ et ses racines

sont Donc : E(x) est un trinôme du second degré n'admettant pas de racine réelle,

On a : a = 1 > 0 donc d'après la règle du signe du trinôme :

x	$-\infty$ $+\infty$
x^2-3x+4	+

Donc: pour tout x réel, E(x) est strictement positif. (E(x) > 0)

4)
$$H(x) = \frac{x^2 + 1}{1 - x^2}$$

• On va déterminer le domaine de définition de H(x):

H(x)Est définie si et seulement si $1-x^2 \neq 0$ qui signifie que : $x \neq -1$ et $x \neq 1$

Donc : le domaine de définition de H est : $D_H = \mathbb{R} - \{-1, 1\}$

• $x^2+1=0$ Équivaut à : $x^2=-1$ impossible : $x^2+1>0$

Le numérateur est positif pour tout x, et le dénominateur est un trinôme du second degré de racines -1 et 1, on peut donc dresser le tableau de signes :

\boldsymbol{x}	$-\infty$ -	-1	l +∞
$x^{2} + 1$	+	+	+
$1 - x^2$	1	0 + 0) –
F(x)	_	+	-

- Si: $x \in]-\infty, -1[\cup]1, +\infty[$ alors: H(x) < 0
- Si: $x \in]-1,1[$ alors: H(x) > 0

H N'est pas définie si x = -1 et x = 1

Exercice19: (**) Résoudre les inéquations suivantes :

1)
$$3x^2 + 6x - 9 > 0$$
 2) $x^2 + 3x - 5 < -x + 2$ 3) $\frac{2x + 6}{x^2 - 4x - 96} < 0$

3)
$$\frac{2x+6}{x^2-4x-96}$$
 < 0

Solution: 1) $3x^2 + 6x - 9 > 0$

- On commence par résoudre l'équation $3x^2 + 6x - 9 = 0$.

Le discriminant de $3x^2 + 6x - 9$ est : $\Delta = 6^2 - 4 \times 3 \times (-9) = 36 + 108 = 144$

Les solutions de l'équation
$$3x^2 + 6x - 9 = 0$$
 sont : $x_1 = \frac{-6 - \sqrt{144}}{2 \times 3} = \frac{-6 - 12}{6} = -3$ et $x_2 = \frac{-6 + \sqrt{144}}{2 \times 3} = \frac{-6 + 12}{6} = 1$

- On dresse ensuite le tableau de signes :

x	$-\infty$	-3		1	$+\infty$
$3x^2+6x-9$	+	Ò	_	Ó	+

 $3x^2 + 6x - 9$ Est strictement positif sur les intervalles $]-\infty; -3[$ et $]1; +\infty[$.

L'ensemble des solutions de l'inéquation $3x^2 + 6x - 9 > 0$ est donc $S =]-\infty; -3[\cup]1; +\infty[$.

b) On commence par rassembler tous les termes dans le membre de gauche afin de pouvoir étudier les signes des trinômes.

Etudier le Signe d'un trinôme :

2)
$$x^2 + 3x - 5 < -x + 2$$
 équivaut à $x^2 + 4x - 7 < 0$

Le discriminant de $x^2 + 4x - 7$ est $\Delta = 4^2 - 4 \times 1 \times (-7) = 44$ et ses racines sont :

Et
$$x_2 = \frac{-4 + \sqrt{44}}{2 \times 1} = -2 + \sqrt{11} x_1 = \frac{3 - 1}{4} = \frac{1}{2}$$

On obtient le tableau de signes :

x	$-\infty$	-2-	-√11	-2-	-√ 11	$+\infty$
$x^2 + 4x - 7$	+	() -	- (þ	+

L'ensemble des solutions de l'inéquation $x^2 + 3x - 5 < -x + 2$ est donc $S = \left[-2 - \sqrt{11}; -2 + \sqrt{11} \right]$.

3)
$$\frac{2x+6}{-x^2+4x+96} < 0$$

a) On va déterminer le domaine de définition de l'inéquation :

Cette inéquation est définie si et seulement si $-x^2 + 4x + 96 \neq 0$

On commence par déterminer les racines du trinôme $-x^2 + 4x + 96$:

Le discriminant de $-x^2 + 4x + 96$ est $\Delta = 4^2 - 4 \times 96 \times (-1) = 400$ et ses racines sont :

$$x_1 = \frac{-4 + \sqrt{400}}{2 \times (-1)} = \frac{-4 + 20}{-2} = \frac{16}{-2} = -8 \text{ et } x_2 = \frac{-4 - \sqrt{400}}{2 \times (-1)} = \frac{-4 - 20}{-2 \times 1} = \frac{-24}{-2} = 12$$

Donc le tableau des signes est :

x	-∞ -	-8 –	3 1	$2 + \infty$
2x+6	_	- () +	+
$-x^2+4x+96$	- (+	+ () –
$\frac{2x+6}{-x^2+4x+96}$	+	- () +	_

L'ensemble des solutions de l'inéquation est : $S =]-8;-3] \cup]12;+\infty[$.

Exercice20: Soit: $F(x) = 6x^3 + 25x^2 + 21x - 10$

1) Déterminer une racine évidente de F(x)

2) Déterminer alors la factorisation de F(x) en un produit de monômes du premier degré.

3) Etudier le signe de : $F(x) = 6x^3 + 25x^2 + 21x - 10$

3) Résoudre dans \mathbb{R} l'inéquation : F(x) > 0

Corrigé:1)

1)
$$F(x) = 6x^3 + 25x^2 + 21x - 10$$

On remarque que F(-2) = 0 donc -2 est une racine évidente de F(x).

2) -2 est une racine évidente de F(x). Ainsi, il existe un polynôme Q(x) de degré 2 telle que

$$F(x) = (x-(-2))Q(x)$$
 et on peut donc écrire qu'il

Existe trois réels a, b et c tels que $F(x) = (x+2)(ax^2+bx+c)$.

Or,
$$(x+2)(ax^2+bx+c) = ax^3+(b+2a)x^2+(c+2b)x+2c$$
.

Comme deux polynômes sont égaux si, et seulement si, ils ont les mêmes coefficients, par identification,

On trouve:
$$\begin{cases} a = 6 \\ b + 2a = 25 \\ c + 2b = 21 \\ 2c = -10 \end{cases}$$
 Equivaut à :
$$\begin{cases} a = 6 \\ b = 13 \\ c = -5 \end{cases}$$

$$F(x) = (x+2)(6x^2+13x-5)$$

Le discriminant de : $6x^2+13x-5$ est : $\Delta=13^2-4\times6\times(-5)=289=17^2$ et ses racines sont :

$$x_1 = \frac{-13 - \sqrt{289}}{2 \times 6} = \frac{-13 - 17}{12} = -\frac{5}{2} \text{ et } x_2 = \frac{-13 + \sqrt{289}}{2 \times 6} = \frac{-13 + 17}{12} = \frac{1}{3}$$

$$6x^2 + 13x - 5 = 6\left(x - \frac{1}{3}\right)\left(x + \frac{5}{2}\right) = 2 \times 3\left(x - \frac{1}{3}\right)\left(x + \frac{5}{2}\right) = (3x - 1)(2x + 5)$$

Donc:
$$F(x) = (x+2)(3x-1)(2x+5)$$

3)
$$F(x) = (x+2)(3x-1)(2x+5)$$

$$x+2=0$$
 Équivaut à : $x=-2$ et $3x-1=0$ qui signifie que : $x=\frac{1}{3}$ et $2x+5=0$ qui signifie que : $x=-\frac{5}{2}$

On obtient le tableau de signes :

x	-∞ -	$-\frac{5}{2}$ -2	$\frac{1}{3}$ $+\infty$
x+2	_	- 0 +	+
3x - 1	_) +
2x + 5	- () + +	+
F(x)	- () + 0 - 0) +

4)
$$F(x) > 0$$
 Équivaut à : $x \in \left[-\frac{5}{2}, -2 \right] \cup \left[\frac{1}{3}, +\infty \right]$

Ainsi, l'ensemble solution de
$$F(x) > 0$$
 est : $S = \left] -\frac{5}{2}, -2 \right[\cup \left] \frac{1}{3}, +\infty \right[$

Exercice21: 1) Résoudre dans \mathbb{R} l'équations suivantes : $x^4 - 7x^2 + 12 = 0$

- 2) Déterminer une factorisation de $x^4 7x^2 + 12$ en un produit de monômes du premier degré.
- 3)En déduire une résolution de l'inéquation : $x^4 7x^2 + 12 \ge 0$

Corrigé:1) Méthode: C'est une équation bicarrée, c'est à dire que l'inconnue est à la puissance 4, 2 et 0.

Je pose donc $X = x^2$ et je me ramène à une équation du second degré dont l'inconnue est X.

Je ne dois pas oublier à la fin de donner les solutions de l'équation de départ.

$$x^4 - 7x^2 + 12 = 0$$
 Équivaut à : $(x^2)^2 - 7x^2 + 12 = 0$

Je pose : $X = x^2$ l'équation devienne : $X^2 - 7X + 12 = 0$

Le discriminant de : $X^2 - 7X + 12 = 0$ est : $\Delta = (-7)^2 - 4 \times 1 \times 12 = 49 - 48 = 1 > 0$ et ses solutions sont :

$$X_1 = \frac{7 - \sqrt{1}}{2 \times 1} = \frac{6}{2} = 3$$
 et $X_2 = \frac{7 + \sqrt{1}}{2 \times 1} = \frac{8}{2} = 4$

C'est-à-dire : $x^2 = 3$ ou $x^2 = 4$

C'est-à-dire : $x = \pm \sqrt{3}$ ou $x = \pm 2$

Donc l'équation $x^4 - 7x^2 + 12 = 0$ admet pour ensemble de solutions :

$$S = \left\{-2; -\sqrt{3}; \sqrt{3}; 2\right\}$$

2) Résolution de l'inéquation : $x^4 - 7x^2 + 12 \ge 0$

On a une factorisation de $x^4 - 7x^2 + 12$ en un produit de monômes du premier degré :

$$x^4 - 7x^2 + 12 = 1(x+2)(x+\sqrt{3})(x-\sqrt{3})(x-2)$$

$$x+2=0$$
 Équivaut à : $x=-2$ et $x+\sqrt{3}=0$ signifie que : $x=-\sqrt{3}$

$$x-\sqrt{3}=0$$
 Signifie que : $x=\sqrt{3}$ et $x-2=0$ Équivaut à : $x=2$

On peut donc dresser le tableau de signes :

\boldsymbol{x}	$-\infty$	-2 -·	$\sqrt{3}$ $\sqrt{3}$	$\sqrt{3}$ 2	2 +∞
x+2	ı	0 +	+	+	+
$x + \sqrt{3}$	ı	-) +	+	+
$x-\sqrt{3}$	_	_	- (+	+
x-2	_	_	_	- () +
I(x)	+	0 -) + () - () +

$$x^4 - 7x^2 + 12 \ge 0$$
 Équivaut à : $x \in]-\infty, -2] \cup [-\sqrt{3}, \sqrt{3}] \cup [2; +\infty[$

Ainsi, l'ensemble solution est :
$$S =]-\infty, -2] \cup [-\sqrt{3}, \sqrt{3}] \cup [2; +\infty[$$

C'est en forgeant que l'on devient forgeron : Dit un proverbe.



