http://www.xriadiat.com/

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Série N°2: Les polynômes

(La correction voir http://www.xriadiat.com/)

Exercice1: (*) Soient P(x) et Q(x) deux polynômes

Calculer P(x)+Q(x) et $P(x)\times Q(x)$ Dans chacun des cas suivants et comparer : $\deg(P\times Q)$ et $\deg(P)+\deg(Q)$

1)
$$P(x) = 2x^3 + 5x - 3$$
 ; $Q(x) = -3x^2 + x - 2$

2)
$$P(x) = x^5 - 2x^2 + 3$$
 ; $Q(x) = -x^5 + 1$

Exercice2: (**) Discuter suivant le paramètre m le degré du polynôme P(x):

$$P(x) = (m^2-4)x^3+(2m-4)x^2+5x-1$$

Exercice3: (**) 1) Montrer que les polynômes suivants sont égaux :

$$P(x) = 2x^3 + 3x^2 - 29x + 30$$
 et $Q(x) = (x+5)(1+2x^2-7x+5)$

2) Déterminer les nombres réels : a ; b et c pour que les polynômes suivants soient égaux :

$$P(x) = ax^2 + bx + c$$
 et $Q(x) = (3x-1)(x+2)$

Exercice4: (**) Soit le polynôme : $P(x) = x^4 + 6x^3 + 15x^2 + 18x + 9$

- 1) Calculer a = b sachant que : $P(x) = (x^2 + 3x)^2 + a(x^2 + 3x) + b$
- 2) Factoriser P(x).

Exercice5: (***) 1) Déterminer un polynôme P de degré 3 tel que : P(x+1)-P(x)=x

- 2) En déduire la somme suivante : $S_1 = 1 + 2 + 3 + \dots + n$
- 3) Déterminer un polynôme P de degré 2 tel que : $P(x+1)-P(x)=x^2$
- 4) En déduire la somme suivante : $S_2 = 1^2 + 2^2 + 3^2 + + n^2$

Exercice6: (***) Trouver le diviseur du polynôme $P(x) = 5x^3 + x^2 + 2$ Sachant que le quotient et le reste sont respectivement : $Q(x) = 5x^2 - 19x + 76$ et R(x) = -299

Exercice7: (**) Soit le polynôme : $P(x) = x^3 + 3x^2 - 2x - 6$

- 1) Calculer P(-3) et que peut-on dire ?
- 2) Déterminer le polynôme Q(x) tel que : $P(x) = (x+3) \times Q(x)$

Exercice8: (**) Soit le polynôme : $P(x) = x^3 - 2x^2 - 5x + 6$

1) Effectuer la division euclidienne de P(x) part x+2 et déterminer le quotient Q(x) et le reste

PROF: ATMANI NAJIB

- 2) Montrer que Q(x) est divisible par x-3
- 3) En déduire une factorisation du polynôme P(x) en polynômes de 1ere degrés

Exercice9: (***) Soit le polynôme suivant (E) : $P(x) = x^3 - \sqrt{3}x^2 - 4x + 4\sqrt{3}$

- 1) Montrer que -2 est racine du polynôme P(x)
- 2) Montrer que : $P(x) = (x+2)(x^2-(\sqrt{3}+2)x+2\sqrt{3})$
- 3) On pose : $Q(x) = x^2 (\sqrt{3} + 2)x + 2\sqrt{3}$ et soit Δ son discriminant
- a) Vérifier que : $\Delta = (\sqrt{3} 2)^2$
- b) Résoudre dans \mathbb{R} l'équation : Q(x) = 0
- 4) En déduire les solutions de l'équation : $x (\sqrt{3} + 2)\sqrt{x} + 2\sqrt{3} = 0$
- 5) Résoudre dans \mathbb{R} l'équation P(x) = 0
- 6) Résoudre dans \mathbb{R} l'inéquation $P(x) \ge 0$

Exercice10: (**) Soit le polynôme : $P(x) = 2x^3 - x^2 - 13x - 6$

- 1)Quels sont les diviseurs entiers relatifs du terme constant 6 ?
- 2) Déterminer (en cas d'existence) les racines relatives du polynôme P(x)
- 3) Factoriser le polynôme P(x) en un produit de monômes
- 4) Résoudre dans \mathbb{R} l'inéquation $P(x) \ge 0$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

<u>2</u>

PROF: ATMANI NAJIB