http://www.xriadiat.com/

PROF: ATMANI NAJIB

Tronc commun Sciences BIOF

Correction Série N°5:

Equations et inéquations du premier degré et systèmes d'inéquations : partie1

Exercice1: (*) et (**) Résoudre dans \mathbb{R} les équations suivantes :

1)
$$\sqrt{3}(x+2)=1-x\sqrt{2}$$

2)
$$\frac{x-1}{x+2} = \frac{x-5}{x-2}$$

2)
$$\frac{x-1}{x+2} = \frac{x-5}{x-2}$$
 3) $\frac{(x-1)(x+2)}{x^2-1} = 0$

4)
$$(x+2)\frac{(2x-1)}{3}(x-2)^2 = 0$$

5)
$$x^3 + 27 = 3x(x+3)$$

Corrigé: 1)
$$\sqrt{3}(x+2) = 1 - x\sqrt{2}$$
 Équivaut à : $\sqrt{3}x + 2\sqrt{3} = 1 - \sqrt{2}x$

Équivaut à :
$$\sqrt{3}x + \sqrt{2}x = 1 - 2\sqrt{3}$$

Équivaut à :
$$(\sqrt{3} + \sqrt{2})x = 1 - 2\sqrt{3}$$

Équivaut à :
$$x = \frac{1 - 2\sqrt{3}}{\sqrt{3} + \sqrt{2}} = \frac{\left(1 - 2\sqrt{3}\right)\left(\sqrt{3} - \sqrt{2}\right)}{\left(\sqrt{3} + \sqrt{2}\right)\left(\sqrt{3} - \sqrt{2}\right)} = \left(1 - 2\sqrt{3}\right)\left(\sqrt{3} - \sqrt{2}\right)$$

PROF: ATMANI NAJIB

Et par suite l'ensemble des solutions : $S = \{(1-2\sqrt{3})(\sqrt{3}-\sqrt{2})\}$

2)
$$\frac{x-1}{x+2} = \frac{x-5}{x-2}$$

a) On va déterminer le domaine de définition de l'équation :

Cette l'équation est définie si et seulement si $x-2 \neq 0$ et $x+2 \neq 0$

Cette l'équation est définie si et seulement si $x \neq 2$ et $x \neq -2$

Donc:
$$D_E = \mathbb{R} - \{-2, 2\}$$

b) Résolvons l'équation :
$$\frac{x-1}{x+2} = \frac{x-5}{x-2}$$

$$\frac{x-1}{x+2} = \frac{x-5}{x-2}$$
 Équivalent à ; $\frac{x-1}{x+2} - \frac{x-5}{x-2} = 0$ On peut réduire au même dénominateur les deux fractions.

Le dénominateur commun est : (x+2)(x+2)

$$\frac{x-1}{x+2} = \frac{x-5}{x-2} \text{ Équivalent à ; } \frac{(x-1)(x-2)-(x-5)(x+2)}{(x+2)(x-2)} = 0$$

$$\frac{x-1}{x+2} = \frac{x-5}{x-2} \text{ Équivalent à ; } \frac{(x-1)(x-2)-(x-5)(x+2)}{(x+2)(x-2)} = 0$$

$$\text{Équivalent à } \frac{x^2-2x-x+2-x^2-2x+5x+10}{(x+2)(x-2)} = 0 \text{ c'est-à-dire : } \frac{12}{(x+2)(x-2)} = 0$$

Donc: 12 = 0 impossible

D'où :
$$S = \emptyset$$

3)
$$\frac{(x-1)(x+2)}{x^2-1} = 0$$

a) On va déterminer le domaine de définition de l'équation :

$$D_{E} = \left\{ x \in \mathbb{R} / x^{2} - 1 \neq 0 \right\} = \left\{ x \in \mathbb{R} / x^{2} - 1^{2} \neq 0 \right\} = \left\{ x \in \mathbb{R} / (x - 1)(x + 1) \neq 0 \right\}$$
$$= \left\{ x \in \mathbb{R} / x - 1 \neq 0 \ \text{et} \ x + 1 \neq 0 \ \right\} = \left\{ x \in \mathbb{R} / x \neq 1 \ \text{et} \ x \neq -1 \ \right\}$$

Donc:
$$D_E = \mathbb{R} - \{-1, 1\}$$

b) Résolvons l'équation :
$$\frac{(x-1)(x+2)}{x^2-1} = 0$$

Soit;
$$x \in \mathbb{R} - \{-1, 1\}$$

$$\frac{(x-1)(x+2)}{x^2-1} = 0$$
 Signifie: $(x-1)(x+2) = 0$

Signifie: x-1=0 ou x+2=0

Signifie: x=1 ou x=-2 et comme: $1 \notin \mathbb{R} - \{-1,1\}$

Alors : $S = \{-2\}$

4)
$$(x+2)\frac{(2x-1)}{3}(x-2)^2 = 0$$
 Signifie: $(x+2)(2x-1)(x-2)^2 = 0$

Signifie: x+2=0 ou 2x-1=0 ou $(x-2)^2=0$

Signifie: x = -2 ou $x = \frac{1}{2}$ ou x - 2 = 0

Signifie: x = -2 ou $x = \frac{1}{2}$ ou x = 2

D'où:
$$S = \left\{-2; \frac{1}{2}; 2\right\}$$

5)
$$x^3 + 27 = 3x(x+3)$$
 Signifie: $x^3 + 3^3 = 3x(x+3)$ on a; $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$

Signifie:
$$(x+3)(x^2-3x+3^2)-3x(x+3)=0$$

Signifie: $(x+3)(x^2-3x+9-3x)=0$
Signifie: $(x+3)(x^2-6x+9)=0$

Signifie:
$$(x+3)(x^2-3x+9-3x)=0$$

Signifie:
$$(x+3)(x^2-6x+9)=0$$

Signifie:
$$(x+3)(x-3)^2 = 0$$

Signifie:
$$x+3=0$$
 ou $(x-3)^2=0$

Signifie:
$$x+3=0$$
 ou $x-3=0$
Signifie: $x=-3$ ou $x=3$

Signifie:
$$x = -3$$
 ou $x = 3$

D'où : $S = \{-3, 3\}$

Exercice2: (**) Résoudre dans \mathbb{R} les équations suivantes :

1)
$$\frac{(2-6x)(3x+12)}{x+2} = 0$$
 2) $\frac{(x-3)(2x-8)}{16x^2-25} = 0$ 3) $\frac{x^2-16}{x+4} = 0$

2)
$$\frac{(x-3)(2x-8)}{16x^2-25} = 0$$

3)
$$\frac{x^2 - 16}{x + 4} = 0$$

PROF: ATMANI NAJIB

Corrigé:1)
$$\frac{(2-6x)(3x+12)}{x+2} = 0$$

a) On va déterminer le domaine de définition de l'équation :

Cette l'équation est définie si et seulement si $x+2 \neq 0$

Donc:
$$D_E = \mathbb{R} - \{-2\}$$

b) Résolvons l'équation :

$$\frac{(2-6x)(3x+12)}{x+2} = 0$$
 Signifie: $(2-6x)(3x+12) = 0$

Signifie: 2-6x=0 ou 3x+12=0

Signifie:
$$x = \frac{1}{3} \in D_E$$
 ou $x = -4 \in D_E$ et par suite: $S = \left\{-4; \frac{1}{3}\right\}$

2)
$$\frac{(x-3)(2x-8)}{16x^2-25} = 0$$

On va déterminer le domaine de définition de l'équation :

Cette l'équation est définie si et seulement si $16x^2 - 25 \neq 0$

<u>2</u>

$$16x^2 - 25 = 0$$
 Signifie: $x^2 = \frac{25}{16}$ signifie: $x = \frac{5}{4}$ ou $x = -\frac{5}{4}$

Donc:
$$D_E = \mathbb{R} - \left\{ -\frac{5}{4}, \frac{5}{4} \right\}$$

b) Résolvons l'équation :

$$\frac{(x-3)(2x-8)}{16x^2-25} = 0 \text{ Signifie}: (x-3)(2x-8) = 0$$

Signifie:
$$x-3=0$$
 ou $2x-8=0$

Signifie:
$$x = 3 \in D_E$$
 ou $x = 4 \in D_E$ et par suite: $S = \{3, 4\}$

$$3) \ \frac{x^2 - 16}{x + 4} = 0$$

On va déterminer le domaine de définition de l'équation :

Cette l'équation est définie si et seulement si $x+4 \neq 0$

$$x+4=0$$
 Signifie: $x=-4$

Donc:
$$D_E = \mathbb{R} - \{-4\}$$

b) Résolvons l'équation :
$$\frac{x^2 - 16}{x + 4} = 0$$
 Signifie : $x^2 - 16 = 0$ Signifie : $x^2 - 4^2 = 0$

Signifie:
$$x-4=0$$
 ou $x+4=0$

Signifie:
$$x = -4 \notin D_E$$
 ou $x = 4 \in D_E$ et par suite: $S = \{4\}$

Exercice3 : La somme des âges de Samira, de sa mère et de sa grand-mère est 90 ans. La grand-mère a le double de l'âge de la mère et l'âge de Samira est le tiers de celui de sa mère. Quel est l'âge de chacune ?

Corrigé : Choix de l'inconnue

Soit x l'âge de la mère

Alors, l'âge de la grand-mère est 2x et celui de Marie est $\frac{1}{3}x$.

L'équation est donc :
$$x + 2x + \frac{1}{3}x = 90$$

La solution est x = 27. Déduisez-en les 3 âges!

Soit à partir de 100 minutes de communication.

Exercice4: (**) (***) Résoudre dans $\mathbb R$ les équations et inéquations suivantes :

1)
$$|x-2| = 4$$
 2) $|x+5| = -3$

3)
$$|x+3| \le 2$$
 4) $|x-1| > 5$ 5) $|3x-1| = |5x+2|$ 6) $|x+1| = 4 - |3x+2|$

7)
$$|x^2-2x+3|=2$$

Corrigé: 1) On a les équivalences suivantes:

$$|x-2| = 4$$
 Signifie que : $x-2 = 4$ ou $x-2 = -4$

Signifie que :
$$x = 6$$
 ou $x = -2$

Donc:
$$S = \{-2, 6\}$$

$$|x+5| = -3$$

Une valeur absolue ne peut pas être strictement négative :Donc : $S = \emptyset$

3)**Règle :**
$$|x-a| \le r$$
 est équivalente à : $-r \le x - a \le r$ avec $r > 0$

D'après notre règle, on a donc :

$$|x+3| \le 2$$
 Signifie que : $-2 \le x+3 \le 2$

Signifie que :
$$-2-3 \le x+3-3 \le 2-3$$

Signifie que :
$$-5 \le x \le -1$$

Donc: S = [-5, -1]

4)
$$|x-1| > 5$$

Règle : |x-a| > r est équivalente à : x-a > r ou x-a < -r avec r > 0

$$|x-1| > 5$$
 Signifie que : $x-1 > 5$ ou $x-1 < -5$

Signifie que :
$$x > 6$$
 ou $x < -4$ Donc : $S =]-\infty; -4[\cup]6; +\infty[$

5)
$$|3x-1| = |5x+2|$$

Égalité de deux valeurs absolues :

Règle : L'égalité |a| = |b| est équivalente à : a = b ou a = -b

Cela découle du fait que par exemple |5| = |-5|

$$|3x-1| = |5x+2|$$
 Signifie que : $3x-1=5x+2$ ou $3x-1=-(5x+2)$

Signifie que :
$$3x-5x=2+1$$
 ou $3x-1=-5x-2$

Signifie que :
$$-2x = 3$$
 ou $8x = -1$

Signifie que :
$$x = -\frac{3}{2}$$
 ou $x = -\frac{1}{8}$

Donc:
$$S = \left\{ -\frac{3}{2}; -\frac{1}{8} \right\}$$

6)
$$|x+1| = 4 - |3x+2|$$

On a les équivalences suivantes :

$$x+1 \ge 0$$
 Signifie que: $x \ge -1$

$$3x+2 \ge 0$$
 Signifie que : $x \ge -\frac{2}{3}$

On distingue alors trois cas:

• Sur :
$$]-\infty;-1]$$
 : $|x+1|=4-|3x+2|$ Signifie que : $-(x+1)=4-(-(3x+2))$

Signifie que :
$$-x-1 = 4 + 3x + 2$$

Signifie que :
$$-4x = 7$$

Signifie que :
$$x = -\frac{7}{4} \in]-\infty; -1]$$

• Sur :
$$\left[-1; -\frac{2}{3}\right]$$
 : $|x+1| = 4 - |3x+2|$ Signifie que : $x+1 = 4 - \left(-(3x+2)\right)$

Signifie que :
$$x+1=4+3x+2$$
 Signifie que : $-2x=5$

Signifie que :
$$x = -\frac{5}{2} \notin \left[-1; -\frac{2}{3} \right]$$

• Sur :
$$\left[-\frac{2}{3}; +\infty \right] : |x+1| = 4 - |3x+2|$$
 Signifie que : $x+1 = 4 - (3x+2)$

Signifie que :
$$x+1=4-3x-2$$
 Signifie que : $4x=1$

Signifie que :
$$x = \frac{1}{4} \in \left[-\frac{2}{3}; +\infty \right]$$

Au final :
$$S = \left\{ -\frac{7}{4}; \frac{1}{4} \right\}$$

7)
$$(E)$$
; $|x^2-2x+3|=2$

$$|x^2-2x+3|=2$$
 Signifie que: $x^2-2x+3=2$ ou $x^2-2x+3=-2$

• Résolution de
$$x^2-2x+3=2$$

$$x^2-2x+3=2$$
 Signifie que : $x^2-2x+1=0$

Signifie que : $(x-1)^2 = 0$

Signifie que : x-1=0

Signifie que : x=1

La seule solution de $x^2-2x+3=2$ est 1.

• Résolution de $x^2-2x+3=-2$.

$$x^2-2x+3=-2$$
 Signifie que: $x^2-2x+5=0$

On calcule son discriminant : $\Delta = -16$.

Ainsi l'équation $x^2-2x+5=0$ n'a aucune solution réelle

Au final, l'ensemble solution de(E) est $S = \{1\}$.

Exercice5: (***) Résoudre dans \mathbb{R} les équations suivantes :

1)
$$|x-2|-|4-x|-1=0$$

2)
$$|x+1|+|x-2|=|x-3|$$

Corrigé:1)|x-2|-|4-x|-1=0

x-2=0 Signifie que : x=2

4-x=0 Signifie que : x=4

x	$-\infty$	2	$+\infty$
x-2	- (+	+
x-2	-x+2	x-2	x-2
4-x	+	+ () –
x+2	4-x	4-x	x-4
1 01 14 1 4	0	0 7	4

PROF: ATMANI NAJIB

Si: $x \le 2$ alors:

|x-2|-|4-x|-1=0 devient :

-3 = 0 impossible donc : $S_1 = \emptyset$

Si : $2 \le x \le 4$ alors : l'équation devient : 2x - 7 = 0 Ce qui Signifie que : $x = \frac{7}{2} \in [2; 4]$

Donc: $S_2 = \left\{ \frac{7}{2} \right\}$

Si: $x \ge 4$ alors: l'équation devient 1 = 0 impossible donc: $S_3 = \emptyset$

Par conséquent : $S = S_1 \cup S_2 \cup S_3 = \left\{\frac{7}{2}\right\}$

2) |x+1|+|x-2|=|x-3|

x+1=0 Signifie que : x=-1

x-2=0 Signifie que : x=2

x-3=0 Signifie que : x=3

x	$-\infty$ –	$\cdot 1$ 2	2 ;	$3 + \infty$
x+1	- () +	+	+
x-2	_	- () +	+
x-3	_	_	- (+

Si: $x \le -1$ alors: l'équation devient: -(x+1)-(x-2)=-(x-3)

Signifie que : -x-1-x+2 = -x+3

Signifie que : $x = -2 \le -1$

Donc: $S_1 = \{-2\}$

Si: $-1 \le x \le 2$ alors: l'équation devient: (x+1)-(x-2)=-(x-3)

Ce qui Signifie que : x+1-x+2=-x+3

Signifie que : $x = 0 \in [-1; 2]$ Donc : $S_2 = \{0\}$

Si: $2 \le x \le 3$ alors: l'équation devient: (x+1)+(x-2)=-(x-3)

Ce qui Signifie que : x+1+x-2=-x+3

Signifie que : 3x = 4

Signifie que : $x = \frac{4}{3} \notin [2;3]$ Donc : $S_3 = \emptyset$

Si: $x \ge 3$ alors: l'équation devient x+1+x-2=x-3

Signifie que : $x = -2 \notin [3; +\infty[$ donc : $S_4 = \emptyset$

Par conséquent : $S = S_1 \cup S_2 \cup S_3 \cup S_4 = \{-2, 0\}$

Exercice6: (***) 1) Résoudre dans \mathbb{R} et discuter suivant le paramètre m l'équation suivante :

$$\frac{2x-1}{x-m} = m$$

Corrigé : • 1. On va déterminer le domaine de définition de l'équation :

Cette équation est définie si et seulement si $x-m \ne 0$ qui signifie que : $x \ne m$

Donc : le domaine de définition de l'équation est : $D_E = \mathbb{R} - \{m\}$

• 2. On résoud l'équation : $\frac{2x-1}{x-m} = m$

Soit $x \in \mathbb{R} - \{m\}$: on va écrire cette équation sous la forme : ax = b

 $\frac{2x-1}{x-m} = m \text{ Signifie que : } 2x-1 = m(x-m) \text{ Signifie que : } 2x-1 = mx-m^2$

Signifie que : $2x - mx = 1 - m^2$

Signifie que : $(2-m)x = 1-m^2$

1ére cas : $m \neq 2$: Alors : $2-m \neq 0$

Alors: $\frac{2x-1}{x-m} = m$ Équivalent à : $x = \frac{1-m^2}{2-m}$

Donc : L'équation admet une solution unique : $x = \frac{1 - m^2}{2 - m}$

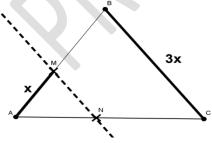
Par suite : $S = \left\{ \frac{1 - m^2}{2 - m} \right\}$

2ére cas : m=2 : L'équation devient : $0x=1-2^2$ Équivalent à : 0=-3

Donc: $S = \emptyset$

Exercice7: (***) Soit ABC un triangle et les droites : (AB) et (MN)sont parallèles et on pose : AM = x cm et BC = 3x cm et MN = 6 cm et AN = 8 cm (Voir la figure)

- 1) Montrer que le périmètre du triangle ABC est : $P(x) = \frac{1}{2}(x^2 + 14x)$
- 2) Existe-t-ils des valeurs de x pour que le périmètre du Triangle ABC est : 18cm Corrigé :



1) Dans le triangle ABC on a : (AB) || (MN)

Donc d'après le théorème de Thalès direct en a :

$$\frac{AB}{AM} = \frac{AC}{AN} = \frac{BC}{MN} = \frac{3x}{6} = \frac{x}{2} \text{ Donc}: \frac{AB}{AM} = \frac{x}{2} \text{ c'est-à-dire}: AB = \frac{x}{2} AM$$

PROF: ATMANI NAJIB

Et on a aussi : $\frac{AC}{AN} = \frac{x}{2}$ c'est-à-dire : $AC = \frac{x}{2}AN$

Et puisque : AM = x cm et AN = 8 cm alors : $AB = \frac{x^2}{2}$ et AC = 4x

Le périmètre du triangle ABC est donc: $P(x) = AB + AC + BC = \frac{x^2}{2} + 4x + 3x = \frac{x^2}{2} + 7x = \frac{1}{2}(x^2 + 14x)$

2) Il suffit de résoudre l'équation : P(x) = 36

$$\frac{1}{2}(x^2+14x)=36$$
 Équivalent à : $x^2+14x-72=0$

Équivalent à : $x^2 + 2 \times 7x + 7^2 - 7^2 - 72 = 0$ c'est-à-dire : $(x+7)^2 - 121 = 0$

Équivalent à : $(x+7)^2 = 121$

Équivalent à : $x+7 = \sqrt{121} = 11$ ou $x+7 = -\sqrt{121} = -11$

Équivalent à : x=4 ou x=-18 < 0 impossible

Donc: x = 4 par suite: AM = 4 cm et $AB = \frac{x}{2}AM = 8$ et $AC = \frac{x}{2}AN = 16$ et AN = 8 cm

Donc : le point M est le milieu du segment [AB] et le point N est le milieu du segment [AC]

Exercice8 : Résoudre dans $\mathbb R$ les inéquations suivantes. On donnera la réponse sous forme d'intervalle

1)
$$2-5x \ge 4+3x$$
 2) $2(4x-3)-3(2x+1) > -x+2$ 3) $\frac{x-3}{6} + \frac{x+7}{2} > 2x-9$

4)
$$\frac{3(2x+1)}{6} - \frac{5x+3}{2} + 5 \le \frac{-x+4}{8}$$
 5) $(2x+1)(9-3x) + 2 \le (6x-1)(1-x)$

6)
$$\frac{1-3x}{2} + \frac{9x-1}{4} < \frac{3x-5}{4}$$

Corrigé :

1)
$$2-5x \ge 4+3x$$
 Signifie que: $-5x-3x \ge -2+4$

Signifie que : $-8x \ge 2$

Signifie que : $x \le \frac{2}{-8}$

Signifie que : $x \le -\frac{1}{4}$

Donc:
$$S = \left[-\infty, -\frac{1}{4} \right]$$

2)
$$2(4x-3)-3(2x+1) > -x+2$$
 Signifie que : $8x-6-6x-3 > -x+2$

Signifie que : 8x - 6x + x > 2 + 3 + 6

Signifie que : 3x > 11

Signifie que : $x > \frac{11}{3}$

Donc:
$$S = \left[\frac{11}{3}, +\infty \right]$$

3)
$$\frac{x-3}{6} + \frac{x+7}{2} > 2x-9$$
 Signifie que: $\frac{x-3}{6} + \frac{3(x+7)}{6} > \frac{6(2x-9)}{6}$

Signifie que : $\frac{x-3+3x+21}{6} > \frac{12x-54}{6}$

Signifie que : $\frac{4x+21}{6} > \frac{12x-54}{6}$

Signifie que : 4x+21>12x-54Signifie que : 4x-12x>-54-21

Signifie que : -8x > -72 Signifie que : $x < \frac{-72}{-8}$

Signifie que : x < 9

Donc: $S =]-\infty, 9[$

4)
$$\frac{3(2x+1)}{6} - \frac{5x+3}{2} + 5 \le \frac{-x+4}{8}$$
 Signifie que: $(\times 16)$: $12(2x+1) - (5x+3) + 80 \le 2(-x+4)$

Signifie que : $24x+12-5x-3+80 \le -2x+8$

Signifie que : $24x-5x+2x \le 8-12-80+3$

Signifie que : $21x \le -81$ Signifie que : $x \le -\frac{\delta 1}{21}$

Signifie que : $x \le -\frac{27}{7}$

Donc: $S = \left[-\infty, -\frac{27}{7} \right]$

5)
$$(2x+1)(9-3x)+2 \le (6x-1)(1-x)$$
 Signifie que : $18x-6x^2+9-3x+2 \le 6x-6x^2-1+x$

Signifie que : $18x - 6x^2 + 9 - 3x + 2 \le 6x - 6x^2 - 1 + x$

Signifie que : $18x - 3x - 6x - x \le -1 - 9 - 2$

Signifie que : $8x \le -12$ Signifie que : $x \le \frac{-12}{8}$

Signifie que : $x \le -\frac{3}{2}$ Donc : $S = \left[-\infty, -\frac{3}{2}\right]$

6)
$$\frac{1-3x}{2} + \frac{9x-1}{4} < \frac{3x-5}{4}$$
 Signifie que : (×4) : $2-6x+9x-1<3x-5$

Signifie que : -6x+9x-3x<-5+1-2

Signifie que : 0x < -6 impossible

Donc: $S = \emptyset$

Exercice9: (**) Résoudre les équations et les inéquations suivantes :

1)
$$(E)$$
: $\frac{x}{2x+1} = \frac{1}{3}$ 2) (I) : $\frac{x}{2x+1} \le \frac{1}{3}$

Corrigé :1)
$$\frac{x}{2x+1} = \frac{1}{3}$$

• On va déterminer le domaine de définition de l'équation :

Cette équation est définie si et seulement si $2x+1\neq 0$ qui signifie que : $x\neq -\frac{1}{2}$

Donc : le domaine de définition de l'équation est : $D_E = \mathbb{R} - \left\{ -\frac{1}{2} \right\}$

• On résoud l'équation : $\frac{x}{2x+1} = \frac{1}{3}$; soit ; $x \in \mathbb{R} - \left\{-\frac{1}{2}\right\}$

$$\frac{x}{2x+1} = \frac{1}{3}$$
 si et seulement si : $3x = 2x+1$ Si et seulement si : $x = 1 \in \mathbb{R} - \left\{-\frac{1}{2}\right\}$

Ainsi, l'ensemble solution de (E) est : $S = \{1\}$

$$2) \frac{x}{2x+1} \le \frac{1}{3}$$

• On va déterminer le domaine de définition de l'inéquation :

Cette inéquation est définie si et seulement si $2x+1\neq 0$ qui signifie que : $x\neq -\frac{1}{2}$

Donc : le domaine de définition de l'inéquation est : $D_I = \mathbb{R} - \left\{ -\frac{1}{2} \right\}$

• On résoud l'inéquation :
$$\frac{x}{2x+1} \le \frac{1}{3}$$
; soit ; $x \in \mathbb{R} - \left\{-\frac{1}{2}\right\}$

$$\frac{x}{2x+1} \le \frac{1}{3}$$
 si et seulement si : $\frac{x}{2x+1} - \frac{1}{3} \le 0$

Si et seulement si :
$$\frac{3x-2x-1}{3(2x+1)} \le 0$$
 Si et seulement si : $\frac{x-1}{3(2x+1)} \le 0$

Le signe de :
$$\frac{x-1}{3(2x+1)}$$
 dépend du signe des expression : $2x+1$ et $x-1$

$$x-1=0$$
 Signifie que : $x=1$ et $2x+1=0$ Signifie que : $x=-\frac{1}{2}$

On obtient le tableau de signes suivant :

x	$-\infty$	<u>-1</u>	1 +∞
x-1	ı	_	+
3(2x+1)	- (+	+
$\frac{x-1}{3(2x+1)}$	+	_	+

Donc :
$$S = \left[-\frac{1}{2}, 1 \right]$$

Exercice 10 : (**) Résoudre les inéquations suivantes dans $\mathbb R$ à l'aide d'un tableau de signes. Il est parfois nécessaire de factoriser l'expression

1)
$$(2x-3)(1-7x)<0$$

2)
$$x(5x-1)-3x(x-4) \le 0$$
 3) $(4x^2-9)(x-1) \ge 0$

3)
$$(4x^2-9)(x-1) \ge 0$$

PROF: ATMANI NAJIB

4)
$$\frac{7-2x}{2-x} \le 0$$
 5) $\frac{2x+1}{x+2} \ge 1$

Corrigé: 1)
$$(2x-3)(1-7x)<0$$

Valeurs frontières :
$$2x-3=0$$
 Signifie que : $x=\frac{3}{2}$ $1-7x=0$ Signifie que : $x=\frac{1}{7}$

On peut alors dresser le tableau de signes :

x	-∞	$\frac{1}{7}$	<u>3</u> +∞
2x - 3	_	- () +
1 - 7x	+	o –	_
(2x-3)(1-7x)	_	0 + () –

Donc:
$$S = \left[-\infty, \frac{1}{7} \right] \cup \left[\frac{3}{2}, +\infty \right]$$

2)
$$x(5x-1)-3x(x-4) \le 0$$
 on factorise

$$x(5x-1)-3x(x-4) \le 0$$
 Signifie que : $x[(5x-1)-3(x-4)] \le 0$

Signifie que :
$$x(5x-1-3x+12) \le 0$$

Signifie que :
$$x(2x+11) \le 0$$

Valeurs frontières :
$$2x+11=0$$
 Signifie que : $x=-\frac{11}{2}$ et $x=0$

On peut alors dresser le tableau de signes :

x	$-\infty$ $-\frac{1}{2}$	0	+∞	
x	-	_	φ	+
2x + 11	- (+		+
x(2x + 11)	+ () –	φ	+

Donc:
$$S = \left[-\frac{11}{2}; 0 \right]$$

3)
$$(4x^2-9)(x-1) \ge 0$$
 on factorise

$$(4x^2-9)(x-1) \ge 0$$
 Signifie que : $(2x-3)(2x+3)(x-1) \ge 0$

Valeurs frontières :
$$2x+3=0$$
 Signifie que : $x=-\frac{3}{2}$ et $2x-3=0$ Signifie que : $x=\frac{3}{2}$

$$x-1=0$$
 Signifie que : $x=1$

On peut alors dresser le tableau de signes :

x	-∞ -	$\frac{3}{2}$ 1	ı	+∞
2x - 3	-	_	- () +
2x + 3	- () +	+	+
x-1	-	- () +	+
(2x-3)(2x+3)(x-1)	- () + () – () +

Donc:
$$S = \left[-\frac{3}{2}, 1 \right] \cup \left[\frac{3}{2}, +\infty \right]$$

$$4)\frac{7-2x}{2-x} \le 0$$

• On va déterminer le domaine de définition de l'inéquation :

Cette équation est définie si et seulement si $2-x \ne 0$ qui signifie que : $x \ne 2$

Donc : le domaine de définition de l'inéquation est : $D_I = \mathbb{R} - \{2\}$

• On résoud l'inéquation : $\frac{7-2x}{2-x} \le 0$

Valeurs frontières : 7-2x=0 Signifie que : $x=\frac{7}{2}$ et 2-x=0 Signifie que : x=2

On peut alors dresser le tableau de signes :

PROF: ATMANI NAJIB

				_		
x	-∞	2		$\frac{7}{2}$		+∞
7 - 2x	+	-	+	0	-	
2-x	+	- ø	-		-	
$\frac{7-2x}{2-x}$	+		-	0	+	

$$Donc: S = \left[2; \frac{7}{2}\right]$$

$$5)\frac{2x+1}{x+2} \ge 1$$

• On va déterminer le domaine de définition de l'inéquation :

Cette équation est définie si et seulement si $x+2\neq 0$ qui signifie que : $x\neq -2$

Donc : le domaine de définition de l'inéquation est : $D_t = \mathbb{R} - \{-2\}$

• On résoud l'inéquation : $\frac{2x+1}{x+2} \ge 1$ On annule le second membre :

$$\frac{2x+1}{x+2} \ge 1$$
 Signifie que : $\frac{2x+1}{x+2} - 1 \ge 0$

Signifie que :
$$\frac{2x+1-x-2}{x+2} \ge 0$$
 Signifie que : $\frac{x-1}{x+2} \ge 0$

Valeurs frontières : x-1=0 Signifie que : x=1 et x+2=0 Signifie que : x=-2

X	-∞	-2	2	1		+∞
x-1		_	_	•	+	
x + 2		- 0) +		+	
$\frac{x-1}{x+2}$		+	_	•	+	

Donc:
$$S =]-\infty, -2[\cup[1, +\infty[$$

Exercice11: (**)

Voici les tarifs annuels de l'eau dans deux communes :

- La commune A facture un abonnement annuel de 32 DH puis 1,13 DH le m^3 d'eau consommé
- La commune B facture un abonnement annuel de 14 DH puis 1,72 DH le m³ d'eau consommé

À partir de quelle consommation d'eau au dixième de m^3 près, le tarif de la commune A est-il plus avantageux que le tarif de la commune B?

Corrigé : Soit x le nombre de m^3 d'eau consommés.

Le coût de la commune A serait égal à : 1,13x+32.

Le coût de la commune B serait égal à : 1,72x+14.

La question posée revient à résoudre : $1,13x+32 < 1,72x+14 \Leftrightarrow 1,13x-1,72x < 14-32$

$$\Leftrightarrow$$
 $-0.59x < -18 \Leftrightarrow x > \frac{-18}{-0.59} \Leftrightarrow x > 30.5$

Le tarif de la commune A est plus avantageux que le tarif de la commune B à partir de 30,6 m^3 d'eau consommés.

Exercice12: (**) Résoudre dans \mathbb{R}^2 les équations suivantes :

1)
$$2x-y+1=2y-2x+5$$
 2) $x+5=y+5$

Corrigé :1) On a
$$2x - y + 1 = 2y - 2x + 5$$
 équivalent à : $4x - 3y - 4 = 0$

Équivalent à :
$$4x = 3y + 4$$
 équivalent à : $x = \frac{3}{4}y + 1$

Donc:
$$S = \left\{ \left(\frac{3}{4} y + 1; y \right) / y \in \mathbb{R} \right\}$$

2) On a x+5=y+5 équivalent à : y=x

Donc: $S = \{(x; x) / x \in \mathbb{R}\}$

Exercice13: (**) Résoudre Dans \mathbb{R}^2 l'inéquation : 3x-4y>0

Corrigé: De l'inéquation précédente on en déduit : l'équation de la droite (D) : 3x-4y=0

Cette droite passe par les points A(4;3) et B(-4;-3) et détermine deux demi-plans P_1 et P_2

(Il nous reste à trouver lequel des deux demis plans qui est la Solution de l'inéquation.)

(Nous choisissons un point pris dans l'un des demi-plans, relevons ses coordonnées et nous contrôlons si ce point vérifie l'inéquation.

Conseil: On choisit, de référence, le point « O » de coordonnées (0;0); c'est-à-dire x=0 et y=0. Les calculs sont donc simplifiés.

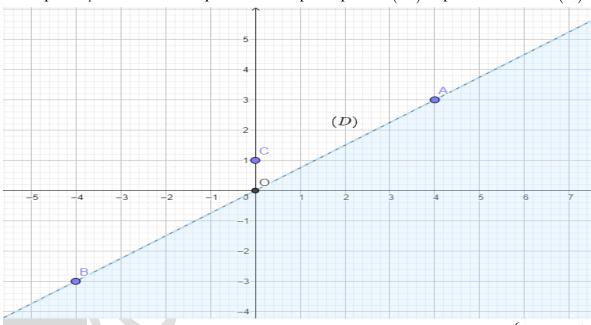
Puisque la droite passe par « O », on prendra un autre point

Soit C(0;1) On a $3 \times 0 - 4 \times 1 = -4 \le 0$

Donc : les coordonnes (0;1) ne vérifie pas l'inéquation.

Donc les Solutions de l'inéquation 3x-4y>0 est l'ensemble des couple (x; y) des points M(x; y) du

demi- plan P_1 colorée en bleu qui ne contient pas le point C(0;1) et privé de la droite (D)



Exercice14: (***) Résoudre Dans \mathbb{R}^2 le système d'inéquations suivant : (S) $\begin{cases} 2x + y - 3 \ge 0 \\ -x + y + 5 \le 0 \\ x \le 4 \end{cases}$

Corrigé: L'équation de la droite (D_1) : 2x + y - 3 = 0

L'équation de la droite (D_2) : -x + y + 5 = 0

L'équation de la droite (D_3) : x-4=0

Soit O(0;0) On a $2\times0+0-3\geq0$ Équivalent à: $-3\geq0$

Donc : les coordonnes O(0,0) ne vérifie pas l'inéquation. $2x + y - 3 \ge 0$

Soit O(0;0) On a $-0+0+5 \le 0$ Équivalent à : $5 \le 0$

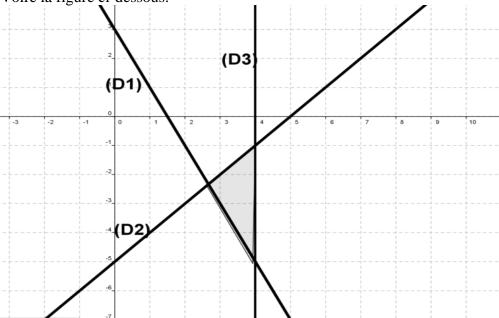
PROF: ATMANI NAJIB

Donc : les coordonnes O(0,0) ne vérifie pas l'inéquation. $-x+y+5 \le 0$

Soit O(0;0) On a $0 \le 4$ Donc: les coordonnes O(0;0) vérifie l'inéquation. $x \le 4$

Donc les Solutions du système est l'ensemble des couple (x; y) des points M(x; y) du plan coloré

Voire la figure ci-dessous.



Exercice15: (***) On désire acheter pour une bibliothèque des livres de maths (60 dh l'un) et des encyclopédies (120dh l'une).

On exige les trois conditions suivantes :

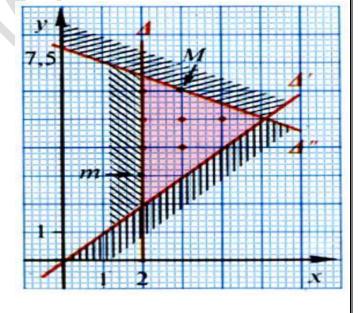
- 1°) Au moins deux livres de maths
- 2°) Plus d'encyclopédies que des livres de maths
- 3°) La dépense doit être inférieure ou égale à 900 DH. Quelles sont les diverses possibilités d'achats ?

Corrigé : Désignons par « x » le nombre de livres de maths (nombre entier) et « y » le nombre d'encyclopédies (nombre entier) alors les trois contraintes donnent le système suivant :

$$\begin{cases} x \ge 2 \\ y \succ x \\ 60x + 120y \le 900 \end{cases}$$
 D'où:
$$\begin{cases} x \ge 2 \\ y \succ x \\ y \le -0.5x + 7.5 \end{cases}$$

Nous devons tracer les droites :

$$\begin{cases} (\Delta): x = 2 \\ (\Delta'): y = x \\ (\Delta''): y = -0.5x + 7.5 \end{cases}$$



PROF: ATMANI NAJIB

Etude du graphique : Le graphique montre « 8 » solutions répondant au problème.

Remarque :Le point « M » (3 livres de maths , 6 encyclopédies) correspond à la dépense maximale De 900 DH.

Le point « m » (2 livres de maths, 3 encyclopédies) correspond à la dépense minimale de 480 dh

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien